13 research outputs found

    Stability of gold nanowires at large Au-Au separations

    Full text link
    The unusual structural stability of gold nanowires at large separations of gold atoms is explained from first-principles quantum mechanical calculations. We show that undetected light atoms, in particular hydrogen, stabilize the experimentally observed structures, which would be unstable in pure gold wires. The enhanced cohesion is due to the partial charge transfer from gold to the light atoms. This finding should resolve a long-standing controversy between theoretical predictions and experimental observations.Comment: 7 pages, 3 figure

    DFT studies of COOH tip-functionalized zigzag and armchair single wall carbon nanotubes

    Get PDF
    Structure and energy calculations of pristine and COOH-modified model single wall carbon nanotubes (SWCNTs) of different length were performed at B3LYP/6-31G* level of theory. From 1 to 9 COOH groups were added at the end of the nanotube. The differences in structure and energetics of partially and fully functionalized SWCNTs at one end of the nanotube are observed. Up to nine COOH groups could be added at one end of (9,0) zigzag SWCNT in case of full functionalization. However, for (5,5) armchair SWCNT, the full functionalization was impossible due to steric crowding and rim deformation. The dependence of substituent attachment energy on the number of substituents at the carbon nanotube rim was observed

    OH-functionalized open-ended armchair single-wall carbon nanotubes (SWCNT) studied by density functional theory

    Get PDF
    The structures of ideal armchair (5,5) single-wall carbon nanotubes (SWCNTs) of different lengths (3.7, 8.8, and 16.0 Å for C40H20, C80H20, and C140H20) and with 1–10 hydroxyl groups at the end of the nanotube were fully optimized at the B3LYP/3-21G level, and in some cases at the B3LYP/6-31G* level, and the energy associated with the attachment of the OH substituent was determined. The OH-group attachment energy was compared with the OH functionalization of phenanthrene and picene models and with previous results for zigzag (9.0) SWCNT systems. In comparison to zigzag SWCNTs, the armchair form is more (by about 5 to 10 kcal mol−1) reactive toward hydroxylation

    From molecular modelling to nanotechnology and clean energy

    No full text
    W dobie ogromnego rozwoju przemysłu i gospodarki oraz katastroficznego widma wyczerpania się surowców kopalnych jako źródeł energii, istotne jest znalezienie alternatywnych źródeł pozyskiwania oraz magazynowania energii. Nanorurki węglowe, grafeny i fulereny stały się najbardziej obiecującymi materiałami XXI w. Ponadto, przewodzące materiały polimerowe mogą być wykorzystane do konwersji energii słonecznej na energię elektryczną. Modelowanie molekularne pozwala na dokładne przewidywanie właściwości fizyko-chemicznych związków chemicznych i materiałów o potencjalnym zastosowaniu w nowoczesnej energetyce (m.in. karbazoli, nanorurek węglowych, grafenów i fulerenów). W pracy przedstawiono zastosowanie modelowania molekularnego do przewidywania parametrów strukturalnych spektroskopowych.In the times of worldwide energetic crisis and catastrophic threat of depletion of fossil resources as energy source, it is important to find new alternative energy sources and methods for energy storage. Carbon nanotubes, graphenes and fullerenes have become most promising materials of 21st century. Moreover, conductive polymer materials might be use for conversion of solar energy to electricity. Molecular modelling allows to precisely predict physical and chemical properties of chemical compounds and materials that might be potentially applied in modern power industry (i.a. carbazoles, carbon nanotubes, graphenes and fullerenes). The article presents examples of molecular modelling application for prediction of spectroscopic parameters

    Phase Analysis of Magnetic Inclusions in Nanomaterials Based on Multiwall Carbon Nanotubes

    No full text
    Functionalized multiwall carbon nanotubes as well as nanocomposite based on that material covered by nanoparticles composed of iron oxides were the subject of investigations. In order to identify all iron-bearing phases including those reported on the base of previous X-ray diffraction measurements, the transmission Mössbauer spectroscopy was utilized. The experiments were carried out both at room temperature and also at low temperatures. It was stated that in the investigated nanotubes some impurities were present, originating from the catalyst remains, in form of Fe-C and α -Fe nanoparticles. The Mössbauer spectra collected for the nanocomposite showed a complex shape characteristic of temperature relaxations. The following subspectra related to iron-based phases were identified: sextet attributed to hematite, with hyperfine magnetic field reduced due to the temperature relaxations, sextet corresponding to iron carbide as well as two doublets linked to superparamagnetic hematite and ferrihydrites
    corecore