313 research outputs found
Design and Fabrication of Terahertz Metallic Gratings on a Two-Wire Waveguide
In this study, we present the design, fabrication and experimental characterization of waveguide-integrated gratings operating at THz frequencie
Symmetric Vlasov-type antenna for High Power Microwave applications
We present a novel Vlasov-type antenna operating at 2.5 GHz and composed of a circular waveguide with a double bevel-cut. Simulation results show that the proposed antenna is capable of providing a wider emission angle if compared to standard Vlasov configurations, while still maintaining an adequate gain level. For this reason, it could be of interest for those High-Power Microwave (HPM) applications in which a larger area need to be covered by the EM field
A Novel Conical Cut Frequency-Tapered Ring Bar SWS for High-Power and Wide-Bandwidth K-Band TWTs
This article presents a novel frequency-tapered Ring Bar Slow Wave Structure (RBSWS)
for high-gain and wide-bandwidth Traveling Wave Tubes (TWTs) operating in the K-band for space
applications. Starting from an analytical circuit model of the RBSWS, a conical-cut geometry is introduced
to reduce the phase velocity. Our proposed novel RBSWS operates over a frequency range of 18.8 to 20.1
GHz, under a cathodic voltage and current of 19.8 kV and 0.3 A, respectively. Particle-In-Cell (PIC) results,
carried out by CST Studio 2023, show a very high output peak power of 840.5 W at a gain of 20.2 dB, for
an input power of 8 W, and an electron efficiency of 15.3%. The tapered RBSWS-TWT achieves a wider
bandwidth, higher output power, and higher electron efficiency with respect to the untapered RBSWS-TWT,
demonstrating the effectiveness of the proposed structure
Long-Term Frequency Stability of Laser Cavity Solitons
In this work, we show the long-term frequency stability of a laser cavity-solitons laser. When the laser is properly configured, it is possible to obtain robust soliton states, whose output was collected at the through output of the system to perform a long-term study. We have characterised the stability of the carrier comb line together with the repetition rate of the comb. These two frequency quantities fully determine the comb from a metrological perspective
Stability of laser cavity-solitons for metrological applications
Laser cavity-solitons can appear in systems comprised of a nonlinear microcavity nested within an amplifying fiber loop. These states are robust and self-emergent and constitute an attractive class of solitons that are highly suitable for microcomb generation. Here, we present a detailed study of the free-running stability properties of the carrier frequency and repetition rate of single solitons, which are the most suitable states for developing robust ultrafast and high repetition rate comb sources. We achieve free-running fractional stability on both optical carrier and repetition rate (i.e., 48.9 GHz) frequencies on the order of 10^-9 for a 1 s gate time. The repetition rate results compare well with the performance of state-of-the-art (externally driven) microcomb sources, and the carrier frequency stability is in the range of performance typical of modern free-running fiber lasers. Finally, we show that these quantities can be controlled by modulating the laser pump current and the cavity length, providing a path for active locking and long-term stabilization
Targeting prostate cancer based on signal transduction and cell cycle pathways
Prostate cancer remains a leading cause of death in men despite increased capacity to diagnose at earlier stages. After prostate cancer has become hormone independent, which often occurs after hormonal ablation therapies, it is difficult to effectively treat. Prostate cancer may arise from mutations and dysregulation of various genes involved in regulation signal transduction (e.g., PTEN, Akt, etc.,) and the cell cycle (e.g., p53, p21Cip1, p27Kip1, Rb, etc.,). This review focuses on the aberrant interactions of signal transduction and cell cycle genes products and how they can contribute to prostate cancer and alter therapeutic effectiveness. Originally published Cell Cycle, Vol. 7, No. 12, June 200
Targeting the leukemic stem cell: the Holy Grail of leukemia therapy
Since the discovery of leukemic stem cells (LSCs) over a decade ago, many of their critical biological
properties have been elucidated, including their distinct replicative properties, cell surface
phenotypes, their increased resistance to chemo-therapeutic drugs and the involvement of growthpromoting
chromosomal translocations. Of particular importance is their ability to transfer
malignancy to non-obese diabetic-severe combined immunodeficient (NOD-SCID) mice.
Furthermore, numerous studies demonstrate that acute myeloid leukemia arises from mutations at
the level of stem cell, and chronic myeloid leukemia is also a stem cell disease. In this review, we
will evaluate the main characteristics of LSCs elucidated in several well-documented leukemias. In
addition, we will discuss points of therapeutic intervention. Promising therapeutic approaches include
the targeting of key signal transduction pathways (for example, PI3K, Rac and Wnt) with smallmolecule
inhibitors and specific cell surface molecules (for example, CD33, CD44 and CD123), with
effective cytotoxic antibodies. Also, statins, which are already widely therapeutically used for a
variety of diseases, show potential in targeting LSCs. In addition, drugs that inhibit ATP-binding
cassette transporter proteins are being extensively studied, as they are important in drug resistance
â a frequent characteristic of LSCs. Although the specific targeting of LSCs is a relatively new field,
it is a highly promising battleground that may reveal the Holy Grail of cancer therapy. Originally published Leukemia, Vol. 23, No. 1, Jan 200
Ticagrelor, but not clopidogrel, reduces arterial thrombosis via endothelial tissue factor suppression
The P2Y12 antagonist ticagrelor reduces mortality in patients with acute coronary syndrome (ACS), compared with clopidogrel, and the mechanisms underlying this effect are not clearly understood. Arterial thrombosis is the key event in ACS; however, direct vascular effects of either ticagrelor or clopidogrel with focus on arterial thrombosis and its key trigger tissue factor have not been previously investigated.Methods and results: Human aortic endothelial cells were treated with ticagrelor or clopidogrel active metabolite (CAM) and stimulated with tumour necrosis factor-alpha (TNF-α); effects on procoagulant tissue factor (TF) expression and activity, its counter-player TF pathway inhibitor (TFPI) and the underlying mechanisms were determined. Further, arterial thrombosis by photochemical injury of the common carotid artery, and TF expression in the murine endothelium were examined in C57BL/6 mice treated with ticagrelor or clopidogrel. Ticagrelor, but not CAM, reduced TNF-α-induced TF expression via proteasomal degradation and TF activity, independently of the P2Y12 receptor and the equilibrative nucleoside transporter 1 (ENT1), an additional target of ticagrelor. In C57BL/6 mice, ticagrelor prolonged time to arterial occlusion, compared with clopidogrel, despite comparable antiplatelet effects. In line with our in vitro results, ticagrelor, but not clopidogrel, reduced TF expression in the endothelium of murine arteries.Conclusion: Ticagrelor, unlike clopidogrel, exhibits endothelial-specific antithrombotic properties and blunts arterial thrombus formation. The additional antithrombotic properties displayed by ticagrelor may explain its greater efficacy in reducing thrombotic events in clinical trials. These findings may provide the basis for new indications for ticagrelor
Roles of the RAF/MEK/ERK Pathway in Cell Growth, Malignant Transformation and Drug Resistance
Growth factors and mitogens use the Ras/Raf/MEK/ERK signaling cascade to transmit signals from their receptors to regulate gene expression and prevent apoptosis. Some components of these pathways are mutated or aberrantly expressed in human cancer (e.g., Ras, B-Raf). Mutations also occur at genes encoding upstream receptors (e.g., EGFR and Flt-3) and chimeric chromosomal translocations (e.g., BCR-ABL) which transmit their signals through these cascades. Even in the absence of obvious genetic mutations, this pathway has been reported to be activated in over 50% of acute myelogenous leukemia and acute lymphocytic leukemia and is also frequently activated in other cancer types (e.g., breast and prostate cancers). Importantly, this increased expression is associated with a poor prognosis. The Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways interact with each other to regulate growth and in some cases tumorigenesis. For example, in some cells, PTEN mutation may contribute to suppression of the Raf/MEK/ERK cascade due to the ability of activated Akt to phosphorylate and inactivate different Rafs. Although both of these pathways are commonly thought to have anti-apoptotic and drug resistance effects on cells, they display different cell lineage specific effects. For example, Raf/MEK/ERK is usually associated with proliferation and drug resistance of hematopoietic cells, while activation of the Raf/MEK/ERK cascade is suppressed in some prostate cancer cell lines which have mutations at PTEN and express high levels of activated Akt. Furthermore the Ras/Raf/MEK/ERK and Ras/PI3K/PTEN/Akt pathways also interact with the p53 pathway. Some of these interactions can result in controlling the activity and subcellular localization of Bim, Bak, Bax, Puma and Noxa. Raf/MEK/ERK may promote cell cycle arrest in prostate cells and this may be regulated by p53 as restoration of wild-type p53 in p53 deficient prostate cancer cells results in their enhanced sensitivity to chemotherapeutic drugs and increased expression of Raf/MEK/ERK pathway. Thus in advanced prostate cancer, it may be advantageous to induce Raf/MEK/ERK expression to promote cell cycle arrest, while in hematopoietic cancers it may be beneficial to inhibit Raf/MEK/ERK induced proliferation and drug resistance. Thus the Raf/MEK/ERK pathway has different effects on growth, prevention of apoptosis, cell cycle arrest and induction of drug resistance in cells of various lineages which may be due to the presence of functional p53 and PTEN and the expression of lineage specific factors. Originally published Biochim Biophys Acta, Vol. 1773, No. 8, August 200
- …