13 research outputs found

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two spe- cies, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contri- butions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different popu- lations and subspecies are still needed to ensure a successful future for chamois research and conservation

    Population structure and genetic diversity of non-native aoudad populations

    No full text
    The aoudad (Ammotragus lervia Pallas 1777) is an ungulate species, native to the mountain ranges of North Africa. In the second half of the twentieth century, it was successfully introduced in some European countries, mainly for hunting purposes, i.e. in Croatia, the Czech Republic, Italy, and Spain. We used neutral genetic markers, the mitochondrial DNA control region sequence and microsatellite loci, to characterize and compare genetic diversity and spatial pattern of genetic structure on different timeframes among all European aoudad populations. Four distinct control region haplotypes found in European aoudad populations indicate that the aoudad has been introduced in Europe from multiple genetic sources, with the population in the Sierra Espuña as the only population in which more than one haplotype was detected. The number of detected microsatellite alleles within all populations (< 3.61) and mean proportion of shared alleles within all analysed populations (< 0.55) indicates relatively low genetic variability, as expected for new populations funded by a small number of individuals. In STRUCTURE results with K = 2–4, Croatian and Czech populations cluster in the same genetic cluster, indicating joined origin. Among three populations from Spain, Almeria population shows as genetically distinct from others in results, while other Spanish populations diverge at K = 4. Maintenance of genetic diversity should be included in the management of populations to sustain their viability, specially for small Czech population with high proportion of shared alleles (0.85) and Croatian population that had the smallest estimated effective population size (Ne = 5.4)

    Fetal cystic hygroma associated with terminal 2p25.1 duplication and terminal 3p25.3 deletion: Cytogenetic, fluorescent in situ hybridization and microarray familial characterization of two different chromosomal structural rearrangements

    No full text
    We report a prenatally diagnosed case of partial trisomy 2p and partial monosomy 3p, resulting from unbalanced translocation (2;3)(p25.1;p25.3) of paternal origin. Parents were non consanguineous Caucasians, with familial history of recurrent miscarriages on the father’s side. Detailed sonographic examination of the fetus showed a septated cystic hygroma measuring 6 mm at 13 weeks’ gestation. Karyotyping and fluorescent in situ hybridization (FISH) analysis of cultured amniotic fluid cells revealed an unbalanced translocation der(3)t(2;3)(p25.1; p25.3) and apparently balanced inv(3)(p13p25.3) in a fetus. Parental cytogenetic evaluation using karyotyping and FISH analysis showed the presence of both a balanced translocation and a paracentric inversion in father t(2;3) (p25.1;p25.3) inv(3)(p13p25.3). Microarray analysis showed a 11.6 Mb deletion at 3p26.3-p25.3 and duplication of 10.5 Mb at the 2p25.3-p25 region. The duplicated region at 2p25.1p25.3 contains 45 different genes, where 12 are reported as OMIM morbid genes with different phenotypical implications. The deleted region at 3p26.3-p25.3 contains 65 genes, out of which 27 are OMIM genes

    Past, present and future of chamois science

    Get PDF
    The chamois Rupicapra spp. is the most abundant mountain ungulate of Europe and the Near East, where it occurs as two species, the northern chamois R. rupicapra and the southern chamois R. pyrenaica. Here, we provide a state-of-the-art overview of research trends and the most challenging issues in chamois research and conservation, focusing on taxonomy and systematics, genetics, life history, ecology and behavior, physiology and disease, management and conservation. Research on Rupicapra has a longstanding history and has contributed substantially to the biological and ecological knowledge of mountain ungulates. Although the number of publications on this genus has markedly increased over the past two decades, major differences persist with respect to knowledge of species and subspecies, with research mostly focusing on the Alpine chamois R. r. rupicapra and, to a lesser extent, the Pyrenean chamois R. p. pyrenaica. In addition, a scarcity of replicate studies of populations of different subspecies and/or geographic areas limits the advancement of chamois science. Since environmental heterogeneity impacts behavioral, physiological and life history traits, understanding the underlying processes would be of great value from both an evolutionary and conservation/management standpoint, especially in the light of ongoing climatic change. Substantial contributions to this challenge may derive from a quantitative assessment of reproductive success, investigation of fine-scale foraging patterns, and a mechanistic understanding of disease outbreak and resilience. For improving conservation status, resolving taxonomic disputes, identifying subspecies hybridization, assessing the impact of hunting and establishing reliable methods of abundance estimation are of primary concern. Despite being one of the most well-known mountain ungulates, substantial field efforts to collect paleontological, behavioral, ecological, morphological, physiological and genetic data on different populations and subspecies are still needed to ensure a successful future for chamois research and conservation
    corecore