15 research outputs found

    Hazard criteria for wake vortex encounters

    Get PDF
    A piloted, motion-base simulation was conducted to evaluate the ability of simulators to produce realistic vortex encounters and to develop criteria to define hazardous encounters. Evaluation of the simulation by pilots experienced in vortex encounters confirmed the capability of the simulator to realistically reproduce wake vortex encounters. A boundary for encounter hazard based on subjective pilot opinion was identified in terms of maximum bank angle. For encounter altitudes from 200 to 500 ft (61.0 to 152.4 m), tentative hazard criteria established for visual flight conditions indicated that the acceptable upset magnitude increased nearly linearly with increasing altitude. The data suggest that the allowable upsets under instrument conditions no greater than 50 percent of that allowable under visual conditions

    Landing approach evaluation of an integrated CRT display for general aviation aircraft

    Get PDF
    A flight director adaptable to general aviation aircraft was evaluated for the landing approach task in a twin turbojet business aircraft. The flight director combined aircraft heading, pitch and roll atitude, and ILS (Instrument Landing System) signals into a single picture on a small cathode ray tube (CRT) to give the pilot an integrated picture of the aircraft situation. The display is unique in that it presents the information on a CRT and gives quasi-command signals to the pilot. The particular display investigated was a preproduction version of the Kaiser Model FP-50 flight director. Approaches made with visual references only, with a conventional ILS displacement instrument, and with the CRT display were compared in terms of tracking performance and pilot workload. Tracking performance of three research pilots using the CRT display was superior to that using the conventional ILS instrument and comparable to that under VFR conditions. Pilot workload (based on pilot comments) was not clearly decreased

    Wake vortex encounter hazards criteria for two aircraft classes

    Get PDF
    An investigation was conducted using a piloted, motion-base simulator to determine wake vortex hazard criteria for two classes of jet transport aircraft. A light business jet and a large multiengine jet transport were represented respectively. The hazard boundaries were determined in terms of the maximum bank angle due to the vortex encounter. Upsets as small as 7 deg in bank angle were considered to be hazardous at breakout altitude (200 ft (61.0 m)) for Instrument Flight Rule (IFR) and at 50 ft (15.2 m) for Visual Flight Rule (VFR) for both aircraft classes. Proximity to the ground was the primary reason for a hazardous rating. This was reflected in the reduction in the maximum bank angle at the hazard boundary and in more consistent ratings as altitude was decreased

    Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    Get PDF
    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed
    corecore