128 research outputs found

    Characterization and differentiation of equine experimental local and early systemic inflammation by expression responses of inflammation-related genes in peripheral blood leukocytes

    Get PDF
    BACKGROUND: Local inflammation may progress into systemic inflammation. To increase our understanding of the basic immunological processes during transition of equine local inflammation into a systemic state, investigation into the equine systemic immune response to local inflammation is warranted. Therefore, the aim of this study was to investigate the innate peripheral blood leukocyte (PBL) immune response to local inflammation in horses, and to compare this response with the PBL immune response during the early phase of acute systemic inflammation. Expression of 22 selected inflammation-related genes was measured in whole blood leukocytes from 6 horses in an experimental cross-over model of lipopolysaccharide- (LPS-) induced acute synovitis (3 μg LPS intraarticularly; locally inflamed [LI] horses) and endotoxemia (1 μg LPS/kg intravenously; systemically inflamed [SI] horses). Multiple clinical and hematological/biochemical examinations were performed, and serial blood samples were analyzed by reverse transcription quantitative real-time PCR. Post-induction expression profiles of all genes were compared between study groups using principal component analysis (PCA) and hierarchical clustering. RESULTS: Moderate synovitis and mild systemic inflammation of approximately 24 h duration was confirmed by clinical and paraclinical observations in LI and SI horses, respectively. In the LI group, samples obtained 3–16 h post-injection showed distinct clustering in the PCA compared with baseline levels, indicating a transcriptional response to local inflammation in PBLs in this time interval. There was no clinical or hematological indication of actual systemic inflammation. There was a clear separation of all LI samples from all SI samples in two distinct clusters, indicating that expression profiles in the two study groups were different, independent of time since LPS injection. Co-regulated genes formed four clusters across study groups which were distinctly differently regulated. Only few of individual genes displayed different expression between the study groups at all times after LPS injection. CONCLUSIONS: Local inflammation in horses initiated an innate transcriptional response in PBLs, which differed from the transcriptional response during the early phase of systemic inflammation. This study may provide new insights into the immunobiology of PBLs during the transition of local inflammation into a systemic state. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-016-0706-8) contains supplementary material, which is available to authorized users

    Disease mutations reveal residues critical to the interaction of P4-ATPases with lipid substrates

    Get PDF
    Abstract Phospholipid flippases (P4-ATPases) translocate specific phospholipids from the exoplasmic to the cytoplasmic leaflet of membranes. While there is good evidence that the overall molecular structure of flippases is similar to that of P-type ATPase ion-pumps, the transport pathway for the “giant” lipid substrate has not been determined. ATP8A2 is a flippase with selectivity toward phosphatidylserine (PS), possessing a net negatively charged head group, whereas ATP8B1 exhibits selectivity toward the electrically neutral phosphatidylcholine (PC). Setting out to elucidate the functional consequences of flippase disease mutations, we have identified residues of ATP8A2 that are critical to the interaction with the lipid substrate during the translocation process. Among the residues pinpointed are I91 and L308, which are positioned near proposed translocation routes through the protein. In addition we pinpoint two juxtaposed oppositely charged residues, E897 and R898, in the exoplasmic loop between transmembrane helices 5 and 6. The glutamate is conserved between PS and PC flippases, whereas the arginine is replaced by a negatively charged aspartate in ATP8B1. Our mutational analysis suggests that the glutamate repels the PS head group, whereas the arginine minimizes this repulsion in ATP8A2, thereby contributing to control the entry of the phospholipid substrate into the translocation pathway

    Gel-Based Proteomics of Clinical Samples Identifies Potential Serological Biomarkers for Early Detection of Colorectal Cancer

    Get PDF
    The burden of colorectal cancer (CRC) is considerable—approximately 1.8 million people are diagnosed each year with CRC and of these about half will succumb to the disease. In the case of CRC, there is strong evidence that an early diagnosis leads to a better prognosis, with metastatic CRC having a 5-year survival that is only slightly greater than 10% compared with up to 90% for stage I CRC. Clearly, biomarkers for the early detection of CRC would have a major clinical impact. We implemented a coherent gel-based proteomics biomarker discovery platform for the identification of clinically useful biomarkers for the early detection of CRC. Potential protein biomarkers were identified by a 2D gel-based analysis of a cohort composed of 128 CRC and site-matched normal tissue biopsies. Potential biomarkers were prioritized and assays to quantitatively measure plasma expression of the candidate biomarkers were developed. Those biomarkers that fulfilled the preset criteria for technical validity were validated in a case-control set of plasma samples, including 70 patients with CRC, adenomas, or non-cancer diseases and healthy individuals in each group. We identified 63 consistently upregulated polypeptides (factor of four-fold or more) in our proteomics analysis. We selected 10 out of these 63 upregulated polypeptides, and established assays to measure the concentration of each one of the ten biomarkers in plasma samples. Biomarker levels were analyzed in plasma samples from healthy individuals, individuals with adenomas, CRC patients, and patients with non-cancer diseases and we identified one protein, tropomyosin 3 (Tpm3) that could discriminate CRC at a significant level (p = 0.0146). Our results suggest that at least one of the identified proteins, Tpm3, could be used as a biomarker in the early detection of CRC, and further studies should provide unequivocal evidence for the real-life clinical validity and usefulness of Tpm3

    Comparing restrictive versus liberal oxygen strategies for trauma patients-the TRAUMOX2 trial:protocol for a randomised clinical trial

    Get PDF
    INTRODUCTION: Supplemental oxygen is commonly used in trauma patients, although it may lead to hyperoxaemia that has been associated with pulmonary complications and increased mortality. The primary objective of this trial, TRAUMOX2, is to compare a restrictive versus liberal oxygen strategy the first 8 hours following trauma. METHODS AND ANALYSIS: TRAUMOX2 is an investigator-initiated, international, parallel-grouped, superiority, outcome assessor-blinded and analyst-blinded, randomised, controlled, clinical trial. Adult patients with suspected major trauma are randomised to eight hours of a restrictive or liberal oxygen strategy. The restrictive group receives the lowest dosage of oxygen (>21%) that ensures an SpO(2) of 94%. The liberal group receives 12–15 L O(2)/min or FiO(2)=0.6–1.0. The primary outcome is a composite of 30-day mortality and/or development of major respiratory complications (pneumonia and/or acute respiratory distress syndrome). With 710 participants in each arm, we will be able to detect a 33% risk reduction with a restrictive oxygen strategy if the incidence of our primary outcome is 15% in the liberal group. ETHICS AND DISSEMINATION: TRAUMOX2 is carried out in accordance with the Helsinki II Declaration. It has been approved by the Danish Committee on Health Research Ethics for the Capital Region (H-21018062) and The Danish Medicines Agency, as well as the Dutch Medical Research Ethics Committee Erasmus MS (NL79921.078.21 and MEC-2021-0932). A website (www.traumox2.org) is available for updates and study results will be published in an international peer-reviewed scientific journal. TRIAL REGISTRATION NUMBERS: EudraCT 2021-000556-19; NCT05146700

    Natural CD4+ T-Cell Responses against Indoleamine 2,3-Dioxygenase

    Get PDF
    The enzyme indoleamine 2,3-dioxygenase (IDO) contributes to immune tolerance in a variety of settings. In cancer IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it endorses the establishment of peripheral immune tolerance to tumor antigens. Recently, we described cytotoxic CD8(+) T-cell reactivity towards IDO-derived peptides.In the present study, we show that CD4(+) helper T cells additionally spontaneously recognize IDO. Hence, we scrutinized the vicinity of the previously described HLA-A*0201-restricted IDO-epitope for CD4(+) T-cell epitopes. We demonstrated the presence of naturally occurring IDO-specific CD4(+) T cells in cancer patients and to a lesser extent in healthy donors by cytokine release ELISPOT. IDO-reactive CD4(+) T cells released IFN-Îł, TNF-Îą, as well as IL-17. We confirm HLA class II-restriction by the addition of HLA class II specific blocking antibodies. In addition, we detected a trend between class I- and class II-restricted IDO responses and detected an association between IDO-specific CD4(+) T cells and CD8(+) CMV-responses. Finally, we could detect IL-10 releasing IDO-reactive CD4(+) T cells.IDO is spontaneously recognized by HLA class II-restricted, CD4(+) T cells in cancer patients and in healthy individuals. IDO-specific T cells may participate in immune-regulatory networks where the activation of pro-inflammatory IDO-specific CD4(+) responses may well overcome or delay the immune suppressive actions of the IDO-protein, which are otherwise a consequence of the early expression of IDO in maturing antigen presenting cells. In contrast, IDO-specific regulatory T cells may enhance IDO-mediated immune suppression
    • …
    corecore