13 research outputs found

    A multidisciplinary scientific investigation of the 1916 Hawthorn Mine Crater, Beaumont Hamel, Somme, Northern France

    Get PDF
    Hawthorn Crater is a prominent feature of the former Somme battlefield near Beaumont Hamel, Northern France. It resulted from the detonation of arguably the most famous of nine mines that the British had prepared below German lines on 1 July 1916, as part of the opening day of the Battle of the Somme. However, the crater has not been studied scientifically, as was in private land until recently taken over by the Hawthorn Crater Association. This paper documents three field seasons of multi-disciplinary site investigations. Methods included: remote sensing, drones, ground-based-LiDAR and surface surveys, geophysics and archaeological investigations. Magnetic anomalies were identified as: still-intact German fire pits, barbed wire and equipment, as the crater became the frontline after formation, and Allied shell craters. This study provided a rare opportunity to study a First World War mine crater, and highlighting modern science can assist detection and characterisation of significant archaeological sites

    Geophysical surveys to help map buried igneous intrusions, Snowdonia, North Wales, UK

    Get PDF
    The geology of the Snowdonia National Park in North Wales comprises a mixture of Lower Palaeozoic shallow marine sediments, acidic igneous rocks and basic intrusions of the Welsh Basin that were subsequently deformed during the Caledonian Orogeny. Thin igneous intrusions are challenging to map due to variable surface exposures, their intrusive origin, structural deformation and burial by glacial sediments. This study used a combination of traditional geological techniques, near-surface geophysical surveys and remote sensing to detect and map a buried dolerite sheet intrusion. Both simple and mathematical analysis of magnetic anomalies and numerical modelling allowed the dolerite position, depths and target widths to be determined. Results showed that calibrated magnetic surveys can characterize buried igneous bodies in such mountainous environments

    Geophysical investigations of WWII air-raid shelters in the UK

    Get PDF
    Just before WW2, the British government prepared for an aerial onslaught that was predicted to raze cities and cause mass casualties. By 1938, the Air Raid Precautions Act officially stated that population protection would be through dispersal, meaning evacuation and small-scale protection, local authority responsibility often devolving to householders. Archaeological records of remaining air-raid shelters are relatively rare and under threat. This paper reports on geophysical surveys on three sites in Stoke-on-Trent and London. Results found three intact Stanton shelters in Stoke-on-Trent, located by GPR, electrical resistivity, magnetometry, gravity and electromagnetic methods. In London, partially demolished shelters and an intact, mass public shelter were both detected by EM and GPR methods, with subsequent intrusive investigations confirming results. Study outcomes shows hitherto-neglected wartime shelters are in varied condition, with geophysical surveys able to detect, characterise and assess them, helping bring WWII British history into the wider scientific community and public domain

    Amyloid binding and beyond: a new approach for Alzheimer's disease drug discovery targeting Aβo–PrPC binding and downstream pathways

    Get PDF
    Amyloid β oligomers (Aβo) are the main toxic species in Alzheimer's disease, which have been targeted for single drug treatment with very little success. In this work we report a new approach for identifying functional Aβo binding compounds. A tailored library of 971 fluorine containing compounds was selected by a computational method, developed to generate molecular diversity. These compounds were screened for Aβo binding by a combined 19F and STD NMR technique. Six hits were evaluated in three parallel biochemical and functional assays. Two compounds disrupted Aβo binding to its receptor PrPC in HEK293 cells. They reduced the pFyn levels triggered by Aβo treatment in neuroprogenitor cells derived from human induced pluripotent stem cells (hiPSC). Inhibitory effects on pTau production in cortical neurons derived from hiPSC were also observed. These drug-like compounds connect three of the pillars in Alzheimer's disease pathology, i.e. prion, Aβ and Tau, affecting three different pathways through specific binding to Aβo and are, indeed, promising candidates for further development

    Large-scale phenotyping of patients with long COVID post-hospitalization reveals mechanistic subtypes of disease

    Get PDF
    One in ten severe acute respiratory syndrome coronavirus 2 infections result in prolonged symptoms termed long coronavirus disease (COVID), yet disease phenotypes and mechanisms are poorly understood1. Here we profiled 368 plasma proteins in 657 participants ≥3 months following hospitalization. Of these, 426 had at least one long COVID symptom and 233 had fully recovered. Elevated markers of myeloid inflammation and complement activation were associated with long COVID. IL-1R2, MATN2 and COLEC12 were associated with cardiorespiratory symptoms, fatigue and anxiety/depression; MATN2, CSF3 and C1QA were elevated in gastrointestinal symptoms and C1QA was elevated in cognitive impairment. Additional markers of alterations in nerve tissue repair (SPON-1 and NFASC) were elevated in those with cognitive impairment and SCG3, suggestive of brain–gut axis disturbance, was elevated in gastrointestinal symptoms. Severe acute respiratory syndrome coronavirus 2-specific immunoglobulin G (IgG) was persistently elevated in some individuals with long COVID, but virus was not detected in sputum. Analysis of inflammatory markers in nasal fluids showed no association with symptoms. Our study aimed to understand inflammatory processes that underlie long COVID and was not designed for biomarker discovery. Our findings suggest that specific inflammatory pathways related to tissue damage are implicated in subtypes of long COVID, which might be targeted in future therapeutic trials

    SARS-CoV-2-specific nasal IgA wanes 9 months after hospitalisation with COVID-19 and is not induced by subsequent vaccination

    Get PDF
    BACKGROUND: Most studies of immunity to SARS-CoV-2 focus on circulating antibody, giving limited insights into mucosal defences that prevent viral replication and onward transmission. We studied nasal and plasma antibody responses one year after hospitalisation for COVID-19, including a period when SARS-CoV-2 vaccination was introduced. METHODS: In this follow up study, plasma and nasosorption samples were prospectively collected from 446 adults hospitalised for COVID-19 between February 2020 and March 2021 via the ISARIC4C and PHOSP-COVID consortia. IgA and IgG responses to NP and S of ancestral SARS-CoV-2, Delta and Omicron (BA.1) variants were measured by electrochemiluminescence and compared with plasma neutralisation data. FINDINGS: Strong and consistent nasal anti-NP and anti-S IgA responses were demonstrated, which remained elevated for nine months (p < 0.0001). Nasal and plasma anti-S IgG remained elevated for at least 12 months (p < 0.0001) with plasma neutralising titres that were raised against all variants compared to controls (p < 0.0001). Of 323 with complete data, 307 were vaccinated between 6 and 12 months; coinciding with rises in nasal and plasma IgA and IgG anti-S titres for all SARS-CoV-2 variants, although the change in nasal IgA was minimal (1.46-fold change after 10 months, p = 0.011) and the median remained below the positive threshold determined by pre-pandemic controls. Samples 12 months after admission showed no association between nasal IgA and plasma IgG anti-S responses (R = 0.05, p = 0.18), indicating that nasal IgA responses are distinct from those in plasma and minimally boosted by vaccination. INTERPRETATION: The decline in nasal IgA responses 9 months after infection and minimal impact of subsequent vaccination may explain the lack of long-lasting nasal defence against reinfection and the limited effects of vaccination on transmission. These findings highlight the need to develop vaccines that enhance nasal immunity. FUNDING: This study has been supported by ISARIC4C and PHOSP-COVID consortia. ISARIC4C is supported by grants from the National Institute for Health and Care Research and the Medical Research Council. Liverpool Experimental Cancer Medicine Centre provided infrastructure support for this research. The PHOSP-COVD study is jointly funded by UK Research and Innovation and National Institute of Health and Care Research. The funders were not involved in the study design, interpretation of data or the writing of this manuscript

    Source parameters of explosions in granite at the French test site in Algeria

    No full text
    4.00Available from British Library Document Supply Centre- DSC:9091.9F(AWE-O--11/88) / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    The use of portable XRF as a forensic geoscience non-destructive trace evidence tool for environmental and criminal investigations

    Get PDF
    Hand-held, portable X-Ray fluorescence instruments (pXRF) provide a means of rapid, in-situ chemical characterisation that has considerable application as a rapid trace evidence characterisation tool in forensic geoscience. This study presents both a control test study which demonstrates optimisation of the data collection process, alongside a range of individual forensic case studies, including heavy metal contamination, conflict archaeology, forensic soil characterisation, and verification of human remains, which together validate the technique and provide some comparison between field-based and laboratory-based pXRF applications. Results highlight the time-efficiency and cost-effectiveness of in-situ, field-based pXRF analyses for material characterisation when compared with other trace evidence methods. Analytical precision of various analytes during in-situ analysis was sufficient to demonstrate considerable application of field-based pXRF as a tool for rapid identification of specific areas of interest to be further investigated. Laboratory-based pXRF analyses yielded greater accuracy which could provide an efficient compromise between field-based pXRF and traditional laboratory-based analytical techniques (e.g. WD-XRF, ICP-MS). Further studies should collect more advanced datasets in more diverse locations to further validate the techniques capability to rapidly conduct geochemical surveys in a range of environments
    corecore