2 research outputs found

    COMPARATIVE STUDY OF SOIL TEST METHODS FOR DETERMINATION OF PLANT AVAILABLE POTASSIUM IN BULGARIAN ARABLE SOILS

    Get PDF
    This comparative study was aimed at estimating analytical behavior of methods for determination of plant available potassium applied to Bulgarian arable soils and to reveal the relationship between the amount of extractable K. Twenty-four samples from two traditional agricultural regions in Bulgaria were studied. Soil potassium was extracted by NH4OAc/HOAc pH 4.5 (AA), diluted double acid (Mehlich 1), CaCl2, BaCl2 and a modified acetate/lactate method (ALM) and determined by Flame AES. The factors influencing the methods accuracy were identified and uncertainty was estimated. The expanded uncertainty was (in mg K2O (100 g dry soil)-1): 0.10 (ALM), 0.64 (Mehlich 1), 0.17 (CaCl2) and 1.1 (AA). The study revealed that the factor which mainly influence the uncertainty of the applied analytical methods for plant available potassium in soil was the calibration of Flame AES determination. The obtained results showed that extractable potassium lowered in the following order . Soil potassium extracted by ALM procedure correlated with AA, BaCl2-K, CaCl2 –K and Mehlich 1 - K at 0.05 level of significance. ALM extracted between 1.2 to 5.8 times more soil K than other methods did. The obtained results provided a base for further study on correlation between extractable K and soil fertility indices for particular soil types and climatic regions in Bulgaria.Keywords: available potassium, extraction methods, Flame AES, uncertainty, arable soils DOI: http://dx.doi.org/10.15826/analitika.2021.25.3.00

    PVDF Hybrid Nanocomposites with Graphene and Carbon Nanotubes and Their Thermoresistive and Joule Heating Properties

    No full text
    In recent years, conductive polymer nanocomposites have gained significant attention due to their promising thermoresistive and Joule heating properties across a range of versatile applications, such as heating elements, smart materials, and thermistors. This paper presents an investigation of semi-crystalline polyvinylidene fluoride (PVDF) nanocomposites with 6 wt.% carbon-based nanofillers, namely graphene nanoplatelets (GNPs), multi-walled carbon nanotubes (MWCNTs), and a combination of GNPs and MWCNTs (hybrid). The influence of the mono- and hybrid fillers on the crystalline structure was analyzed by X-ray diffraction (XRD) and differential scanning calorimetry (DSC). It was found that the nanocomposites had increased amorphous fraction compared to the neat PVDF. Furthermore, nanocomposites enhanced the β phase of the PVDF by up to 12% mainly due to the presence of MWCNTs. The resistive properties of the nanocompositions were weakly affected by the temperature in the analyzed temperature range of 25–100 °C; nevertheless, the hybrid filler composites were proven to be more sensitive than the monofiller ones. The Joule heating effect was observed when 8 and 10 V were applied, and the compositions reached a self-regulating effect at around 100–150 s. In general, the inclusion in PVDF of nanofillers such as GNPs and MWCNTs, and especially their hybrid combinations, may be successfully used for tuning the self-regulated Joule heating properties of the nanocomposites
    corecore