6 research outputs found

    3-Methyl 5-{3-[(4-Methylbenzenesulfonyl)oxy]propyl} 4-(2,3-Dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate

    No full text
    The 1,4-dihydropyridine is a ubiquitous scaffold employed not only in medicinal chemistry but also in organic synthesis, given its ability to act as a hydrogen transfer reagent, thus emulating NAD(P)H reducing agents. In this work, we describe the synthesis of 3-methyl 5-{3-[(4-methylbenzenesulfonyl)oxy]propyl} 4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate as scaffold, which enables downstream derivatization towards new 1,4-dihydropyridine molecules. Inspired by the literature, a new two-step synthesis was planned that involved: (i) synthesis of a silylated 1,4-dihydropyridine derivative and (ii) deprotection and tosylation in one step using tosyl fluoride

    Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells

    No full text
    The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices

    Surface Modulation via Conjugated Bithiophene Ammonium Salt for Efficient Inverted Perovskite Solar Cells

    No full text
    The metal halide perovskite absorbers are prone to surface defects, which severely limit the power conversion efficiencies (PCEs) and the operational stability of the perovskite solar cells (PSCs). Herein, trace amounts of bithiophene propylammonium iodide (bi-TPAI) are applied to modulate the surface properties of the gas-quenched perovskite. It is found that the bi-TPAI surface treatment has negligible impact on the perovskite morphology, but it can induce a defect passivation effect and facilitate the charge carrier extraction, contributing to the gain in the open-circuit voltage (Voc) and fill factor. As a result, the PCE of the gas-quenched sputtered NiOx-based inverted PSCs is enhanced from the initial 20.0% to 22.0%. Most importantly, the bi-TPAI treatment can largely alleviate or even eliminate the burn-in process during the maximum power point tracking measurement, improving the operational stability of the devices

    Tailoring Interlayer Charge Transfer Dynamics in 2D Perovskites with Electroactive Spacer Molecules

    No full text
    The family of hybrid organic–inorganic lead-halide perovskites are the subject of intense interest for optoelectronic applications, from light-emitting diodes to photovoltaics to X-ray detectors. Due to the inert nature of most organic molecules, the inorganic sublattice generally dominates the electronic structure and therefore the optoelectronic properties of perovskites. Here, we use optically and electronically active carbazole-based Cz-Ci molecules, where Ci indicates an alkylammonium chain and i indicates the number of CH2 units in the chain, varying from 3 to 5, as cations in the two-dimensional (2D) perovskite structure. By investigating the photophysics and charge transport characteristics of (Cz-Ci)2PbI4, we demonstrate a tunable electronic coupling between the inorganic lead-halide and organic layers. The strongest interlayer electronic coupling was found for (Cz-C3)2PbI4, where photothermal deflection spectroscopy results remarkably reveal an organic–inorganic charge transfer state. Ultrafast transient absorption spectroscopy measurements demonstrate ultrafast hole transfer from the photoexcited lead-halide layer to the Cz-Ci molecules, the efficiency of which increases by varying the chain length from i = 5 to i = 3. The charge transfer results in long-lived carriers (10–100 ns) and quenched emission, in stark contrast to the fast (sub-ns) and efficient radiative decay of bound excitons in the more conventional 2D perovskite (PEA)2PbI4, in which phenylethylammonium (PEA) acts as an inert spacer. Electrical charge transport measurements further support enhanced interlayer coupling, showing increased out-of-plane carrier mobility from i = 5 to i = 3. This study paves the way for the rational design of 2D perovskites with combined inorganic–organic electronic properties through the wide range of functionalities available in the world of organics
    corecore