49 research outputs found

    Two-play game: Playing casual video games with outgroup members reduces prejudice towards that outgroup

    Get PDF
    Video games have traditionally held a dubious reputation in the media and have been linked to many antisocial behaviors. A large amount of research has borne out some of these concerns, linking video games with addiction and particularly aggression. However, recent work in this area has begun to examine the positive aspects of video gaming. In this work, we examine how playing casual, low-involvement video games with an outgroup member may reduce prejudice. In Study 1, participants played cooperatively or competitively with a (trivial) outgroup member or alone. In Studies 2 and 3, a meaningful social identity was used: students’ university affiliation. Participants played either cooperatively with a rival university student against the computer, or alone. Analyses of all three studies showed that attitudes toward the outgroup were more positive after playing with an outgroup member compared with control conditions. How these findings may be applied to real world groups and extensions for future research are then discussed

    H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues

    Get PDF
    A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues

    A randomized two arm phase III study in patients post radical resection of liver metastases of colorectal cancer to investigate bevacizumab in combination with capecitabine plus oxaliplatin (CAPOX) vs CAPOX alone as adjuvant treatment

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>About 50% of patients with colorectal cancer are destined to develop hepatic metastases. Radical resection is the most effective treatment for patients with colorectal liver metastases offering five year survival rates between 36-60%. Unfortunately only 20% of patients are resectable at time of presentation. Radiofrequency ablation is an alternative treatment option for irresectable colorectal liver metastases with reported 5 year survival rates of 18-30%. Most patients will develop local or distant recurrences after surgery, possibly due to the outgrowth of micrometastases present at the time of liver surgery. This study aims to achieve an improved disease free survival for patients after resection or resection combined with RFA of colorectal liver metastases by adding the angiogenesis inhibitor bevacizumab to an adjuvant regimen of CAPOX.</p> <p>Methods/design</p> <p>The Hepatica study is a two-arm, multicenter, randomized, comparative efficacy and safety study. Patients are assessed no more than 8 weeks before surgery with CEA measurement and CT scanning of the chest and abdomen. Patients will be randomized after resection or resection combined with RFA to receive CAPOX and Bevacizumab or CAPOX alone. Adjuvant treatment will be initiated between 4 and 8 weeks after metastasectomy or resection in combination with RFA. In both arms patients will be assessed for recurrence/new occurrence of colorectal cancer by chest CT, abdominal CT and CEA measurement. Patients will be assessed after surgery but before randomization, thereafter every three months after surgery in the first two years and every 6 months until 5 years after surgery. In case of a confirmed recurrence/appearance of new colorectal cancer, patients can be treated with surgery or any subsequent line of chemotherapy and will be followed for survival until the end of study follow up period as well. The primary endpoint is disease free survival. Secondary endpoints are overall survival, safety and quality of life.</p> <p>Conclusion</p> <p>The HEPATICA study is designed to demonstrate a disease free survival benefit by adding bevacizumab to an adjuvant regime of CAPOX in patients with colorectal liver metastases undergoing a radical resection or resection in combination with RFA.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov Identifier NCT00394992</p

    Parvovirus Minute Virus of Mice Induces a DNA Damage Response That Facilitates Viral Replication

    Get PDF
    Infection by DNA viruses can elicit DNA damage responses (DDRs) in host cells. In some cases the DDR presents a block to viral replication that must be overcome, and in other cases the infecting agent exploits the DDR to facilitate replication. We find that low multiplicity infection with the autonomous parvovirus minute virus of mice (MVM) results in the activation of a DDR, characterized by the phosphorylation of H2AX, Nbs1, RPA32, Chk2 and p53. These proteins are recruited to MVM replication centers, where they co-localize with the main viral replication protein, NS1. The response is seen in both human and murine cell lines following infection with either the MVMp or MVMi strains. Replication of the virus is required for DNA damage signaling. Damage response proteins, including the ATM kinase, accumulate in viral-induced replication centers. Using mutant cell lines and specific kinase inhibitors, we show that ATM is the main transducer of the signaling events in the normal murine host. ATM inhibitors restrict MVM replication and ameliorate virus-induced cell cycle arrest, suggesting that DNA damage signaling facilitates virus replication, perhaps in part by promoting cell cycle arrest. Thus it appears that MVM exploits the cellular DNA damage response machinery early in infection to enhance its replication in host cells

    A tight control of Rif1 by Oct4 and Smad3 is critical for mouse embryonic stem cell stability

    Get PDF
    Prolonged culture of embryonic stem cells (ESCs) leads them to adopt embryonal carcinoma cell features, creating enormous dangers for their further application. The mechanism involved in ESC stability has not, however, been extensively studied. We previously reported that SMAD family member 3 (Smad3) has an important role in maintaining mouse ESC stability, as depletion of Smad3 results in cancer cell-like properties in ESCs and Smad3−/− ESCs are prone to grow large, malignant teratomas. To understand how Smad3 contributes to ESC stability, we performed microarray analysis to compare the transcriptome of wild-type and Smad3−/− ESCs. We found that Rif1 (RAP1-associated protein 1), a factor important for genomic stability, is significantly upregulated in Smad3−/− ESCs. The expression level of Rif1 needs to be tightly controlled in ESCs, as a low level of Rif1 is associated with ESC differentiation, but a high level of Rif1 is linked to ESC transformation. In ESCs, Oct4 activates Rif1, whereas Smad3 represses its expression. Oct4 recruits Smad3 to bind to Rif1 promoter, but Smad3 joining facilitates the loading of a polycomb complex that generates a repressive epigenetic modification on Rif1 promoter, and thus maintains the expression of Rif1 at a proper level in ESCs. Interestingly, Rif1 short hairpin RNA (shRNA)-transduced Smad3−/− ESCs showed less malignant properties than the control shRNA-transduced Smad3−/− ESCs, suggesting a critical role of Rif1 in maintaining the stability of ESCs during proliferation

    Is religiosity in a prospective partner always desirable?: The moderating roles of shared social identity and medium of communication when choosing interaction partners

    Get PDF
    The profession of religion gives rise to myriad inferences and connotations, yet surprisingly little research has examined how it may influence with whom we choose to work. Two experiments conducted at a UK university investigated how religiosity by prospective collaborators affected attitudes and behaviour towards them. Participants in experiment 1 (N = 96) and experiment 2 (N = 120) demonstrated that individuals have a greater preference for, and are more likely to choose, a partner who shares their religious tendencies, but only when they anticipate working face-to-face. When electronic communication was anticipated, this bias disappeared. The implications for these findings are then discussed, particularly with regard to how they may impact on real-life issues such as online recruitment

    Evaluation of Methylcellulose and Dimethyl Sulfoxide as the Cryoprotectants in a Serum-Free Freezing Media for Cryopreservation of Adipose-Derived Adult Stem Cells

    No full text
    Developing effective techniques for the cryopreservation of human adipose-derived adult stem cells (ASCs) could increase the usefulness of these cells in tissue engineering and regenerative medicine. To this end, we investigated the post-freeze/thaw viability and apoptotic behavior of Passage 1 (P1) adult stem cells (ASCs) in 11 different media: (i) the traditional media containing Dulbecco’s modified Eagle’s medium (DMEM) with 80% fetal calf serum (FCS) and 10% dimethyl sulfoxide (DMSO), (ii) DMEM with 80% human serum (HS) and 10% DMSO, (iii) DMEM with 1% methyl cellulose (MC) and 10% of either HS or FCS or DMSO, and (iv) DMEM with 0%, 2%, 4%, 6%, 8%, or 10% DMSO. Approximately 1 mL (106 cells/mL) of P1 ASCs were frozen overnight in a −80°C freezer and stored in liquid nitrogen for 2 weeks before being rapidly thawed in a 37°C water bath (1–2 min of agitation), resuspended in culture media, and seeded in separate wells of a 6-well plate for a 24-h incubation period at 37°C. After 24 h, the thawed samples were analyzed by bright-field microscopy and flow cytometry. The results suggest that the absence of DMSO (and the presence of MC) significantly increases the fraction of apoptotic and/or necrotic ASCs. However, the percentage of viable cells obtained with 2% DMSO and DMEM was comparable with that obtained in freezing media with 10% DMSO and 80% serum (HS or FCS), that is, ∼84% ± 5% and ∼84% ± 8%, respectively. Adipogenic and osteogenic differentiation behavior of the frozen thawed cells was also assessed using histochemical staining. Our results suggest that post-thaw ASC viability, adipogenic and osteogenic differentiability can be maintained even when they are frozen in the absence of serum but with a minimal concentration of 2% DMSO in DMEM
    corecore