327 research outputs found

    Kinetic hindrance during the initial oxidation of Pd(100) at ambient pressures

    Full text link
    The oxidation of the Pd(100) surface at oxygen pressures in the 10^-6 to 10^3 mbar range and temperatures up to 1000 K has been studied in-situ by surface x-ray diffraction (SXRD). The results provide direct structural information on the phases present in the surface region and on the kinetics of the oxide formation. Depending on the (T,p) environmental conditions we either observe a thin sqrt(5) x sqrt(5) R27 surface oxide or the growth of a rough, poorly ordered bulk oxide film of PdO predominantly with (001) orientation. By either comparison to the surface phase diagram from first-principles atomistic thermodynamics or by explicit time-resolved measurements we identify a strong kinetic hindrance to the bulk oxide formation even at temperatures as high as 675 K.Comment: 4 pages including 4 figures, Related publications can be found at http://www.fhi-berlin.mpg.de/th/paper.htm

    Exponential Size Distribution of von Willebrand Factor

    Get PDF
    AbstractVon Willebrand Factor (VWF) is a multimeric protein crucial for hemostasis. Under shear flow, it acts as a mechanosensor responding with a size-dependent globule-stretch transition to increasing shear rates. Here, we quantify for the first time, to our knowledge, the size distribution of recombinant VWF and VWF-eGFP using a multilateral approach that involves quantitative gel analysis, fluorescence correlation spectroscopy, and total internal reflection fluorescence microscopy. We find an exponentially decaying size distribution of multimers for recombinant VWF as well as for VWF derived from blood samples in accordance with the notion of a step-growth polymerization process during VWF biosynthesis. The distribution is solely described by the extent of polymerization, which was found to be reduced in the case of the pathologically relevant mutant VWF-IIC. The VWF-specific protease ADAMTS13 systematically shifts the VWF size distribution toward smaller sizes. This dynamic evolution is monitored using fluorescence correlation spectroscopy and compared to a computer simulation of a random cleavage process relating ADAMTS13 concentration to the degree of VWF breakdown. Quantitative assessment of VWF size distribution in terms of an exponential might prove to be useful both as a valuable biophysical characterization and as a possible disease indicator for clinical applications

    Reorientation of Spin Density Waves in Cr(001) Films induced by Fe(001) Cap Layers

    Full text link
    Proximity effects of 20 \AA thin Fe layers on the spin density waves (SDWs) in epitaxial Cr(001) films are revealed by neutron scattering. Unlike in bulk Cr we observe a SDW with its wave vector Q pointing along only one {100} direction which depends dramatically on the film thickness t_{Cr}. For t_{Cr} < 250 \AA the SDW propagates out-of-plane with the spins in the film plane. For t_{Cr} > 1000 \AA the SDW propagates in the film plane with the spins out-of-plane perpendicular to the in-plane Fe moments. This reorientation transition is explained by frustration effects in the antiferromagnetic interaction between Fe and Cr across the Fe/Cr interface due to steps at the interface.Comment: 4 pages (RevTeX), 3 figures (EPS

    Echocardiographic AV-interval optimization in patients with reduced left ventricular function

    Get PDF
    BACKGROUND: Ritter's method is a tool used to optimize AV delay in DDD pacemaker patients with normal left ventricular function only. The goal of our study was to evaluate Ritter's method in AV delay-interval optimization in patients with reduced left ventricular function. METHODS: Patients with implanted DDD pacemakers and AVB III° were assigned to one of two groups according to ejection fraction (EF): Group 1 (EF > 35%) and Group 2 (EF < 35%). AV delay optimization was performed by means of radionuclide ventriculography (RNV) and application of Ritter's method. RESULTS: For each of the patients examined, we succeeded in defining an optimal AV interval by means of both RNV and Ritter's method. The optimal AV delay determined by RNV correlated well with the delay found by Ritter's method, especially among those patients with reduced EF. The intra-class correlation coefficient was 0.8965 in Group 1 and 0.9228 in Group 2. The optimal AV interval in Group 1 was 190 ± 28.5 ms, and 180 ± 35 ms in Group 2. CONCLUSION: Ritter's method is also effective for optimization of AV intervals among patients with reduced left ventricular function (EF < 35%). The results obtained by RNV correlate well with those from Ritter's method. Individual programming of the AV interval is fundamentally essential in all cases

    The phase of iron catalyst nanoparticles during carbon nanotube growth

    Get PDF
    We study the Fe-catalyzed chemical vapor deposition of carbon nanotubes by complementary in situ grazing-incidence X-ray diffraction, in situ X-ray reflectivity, and environmental transmission electron microscopy. We find that typical oxide supported Fe catalyst films form widely varying mixtures of bcc and fcc phased Fe nanoparticles upon reduction, which we ascribe to variations in minor commonly present carbon contamination levels. Depending on the as-formed phase composition, different growth modes occur upon hydrocarbon exposure: For γ-rich Fe nanoparticle distributions, metallic Fe is the active catalyst phase, implying that carbide formation is not a prerequisite for nanotube growth. For α-rich catalyst mixtures, Fe3C formation more readily occurs and constitutes part of the nanotube growth process. We propose that this behavior can be rationalized in terms of kinetically accessible pathways, which we discuss in the context of the bulk iron–carbon phase diagram with the inclusion of phase equilibrium lines for metastable Fe3C. Our results indicate that kinetic effects dominate the complex catalyst phase evolution during realistic CNT growth recipes.S.H. acknowledges funding from ERC grant InsituNANO (No. 279342). We acknowledge the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities. We acknowledge the use of facilities within the LeRoy Eyring Center for Solid State Science at Arizona State University. C.T.W. and C.S.E. acknowledge funding from the EC project Technotubes. A.D.G. acknowledges funding from the Marshall Aid Commemoration Commission and the National Science Foundation. R.S.W. acknowledges funding from EPSRC (Doctoral training award) and B.C.B. acknowledges a Research Fellowship at Hughes Hall, Cambridge.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/cm301402g

    Low coverage but few inclusion errors in Burkina Faso: a community-based targeting approach to exempt the indigent from user fees

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>User fees were generalized in Burkina Faso in the 1990 s. At the time of their implementation, it was envisioned that measures would be instituted to exempt the poor from paying these fees. However, in practice, the identification of indigents is ineffective, and so they do not have access to care. Thus, a community-based process for selecting indigents for user fees exemption was tested in a district. In each of the 124 villages in the catchment areas of ten health centres, village committees proposed lists of indigents that were then validated by the health centres' management committees. The objective of this study is to evaluate the effectiveness of this community-based selection.</p> <p>Methods</p> <p>An indigent-selection process is judged effective if it minimizes inclusion biases and exclusion biases. The study compares the levels of poverty and of vulnerability of indigents selected by the management committees (n = 184) with: 1) indigents selected in the villages but not retained by these committees (n = 48); ii) indigents selected by the health centre nurses (n = 82); and iii) a sample of the rural population (n = 5,900).</p> <p>Results</p> <p>The households in which the three groups of indigents lived appeared to be more vulnerable and poorer than the reference rural households. Indigents selected by the management committees and the nurses were very comparable in terms of levels of vulnerability, but the former were more vulnerable socially. The majority of indigents proposed by the village committees who lived in extremely poor households were retained by the management committees. Only 0.36% of the population living below the poverty threshold and less than 1% of the extremely poor population were selected.</p> <p>Conclusions</p> <p>The community-based process minimized inclusion biases, as the people selected were poorer and more vulnerable than the rest of the population. However, there were significant exclusion biases; the selection was very restrictive because the exemption had to be endogenously funded.</p

    In situ observations of the atomistic mechanisms of Ni catalyzed low temperature graphene growth.

    Get PDF
    The key atomistic mechanisms of graphene formation on Ni for technologically relevant hydrocarbon exposures below 600 °C are directly revealed via complementary in situ scanning tunneling microscopy and X-ray photoelectron spectroscopy. For clean Ni(111) below 500 °C, two different surface carbide (Ni2C) conversion mechanisms are dominant which both yield epitaxial graphene, whereas above 500 °C, graphene predominantly grows directly on Ni(111) via replacement mechanisms leading to embedded epitaxial and/or rotated graphene domains. Upon cooling, additional carbon structures form exclusively underneath rotated graphene domains. The dominant graphene growth mechanism also critically depends on the near-surface carbon concentration and hence is intimately linked to the full history of the catalyst and all possible sources of contamination. The detailed XPS fingerprinting of these processes allows a direct link to high pressure XPS measurements of a wide range of growth conditions, including polycrystalline Ni catalysts and recipes commonly used in industrial reactors for graphene and carbon nanotube CVD. This enables an unambiguous and consistent interpretation of prior literature and an assessment of how the quality/structure of as-grown carbon nanostructures relates to the growth modes.L.L.P. acknowledges funding from Area di Ricerca Scientifica e Tecnologica of Trieste and from MIUR through Progetto Strategico NFFA. C.A. acknowledges support from CNR through the ESF FANAS project NOMCIS. C.A. and C.C. acknowledge financial support from MIUR (PRIN 2010-2011 nº 2010N3T9M4). S.B. acknowledges funding from ICTP TRIL program. S.H. acknowledges funding from ERC grant InsituNANO (n°279342). R.S.W. acknowledges funding from EPSRC (Doctoral training award), and the Nano Science & Technology Doctoral Training Centre Cambridge (NanoDTC). The help of C. Dri and F. Esch (design) and P. Bertoch and F. Salvador (manufacturing) in the realization of the high temperature STM sample holder is gratefully acknowledged. We acknowledge the Helmholtz-Zentrum-Berlin Electron storage ring BESSY II for provision of synchrotron radiation at the ISISS beamline and we thank the BESSY staff for continuous support of our experiments.This is the accepted manuscript. The final version is available from ACS at http://pubs.acs.org/doi/abs/10.1021/nn402927q

    CVD-Enabled Graphene Manufacture and Technology.

    Get PDF
    Integrated manufacturing is arguably the most challenging task in the development of technology based on graphene and other 2D materials, particularly with regard to the industrial demand for “electronic-grade” large-area films. In order to control the structure and properties of these materials at the monolayer level, their nucleation, growth and interfacing needs to be understood to a level of unprecedented detail compared to existing thin film or bulk materials. Chemical vapor deposition (CVD) has emerged as the most versatile and promising technique to develop graphene and 2D material films into industrial device materials and this Perspective outlines recent progress, trends, and emerging CVD processing pathways. A key focus is the emerging understanding of the underlying growth mechanisms, in particular on the role of the required catalytic growth substrate, which brings together the latest progress in the fields of heterogeneous catalysis and classic crystal/thin-film growth.Funding from the ERC (Grant No. 279342, InSituNANO) and EPSRC (Grant No. EP/K016636/1, GRAPHTED) is acknowledged. R.S.W. acknowledges a research fellowship from St. John’s College, Cambridge.This is the final version of the article. It first appeared from ACS via http://dx.doi.org/10.1021/acs.jpclett.5b0105
    corecore