100 research outputs found

    Concerted Action of Evolutionarily Ancient and Novel SNARE Complexes in Flowering-Plant Cytokinesis

    Get PDF
    Membrane vesicles delivered to the cell-division plane fuse with one another to form the partitioning membrane during plant cytokinesis, starting in the cell center. In Arabidopsis, this requires SNARE complexes involving the cytokinesis-specific Qa-SNARE KNOLLE. However, cytokinesis still occurs in knolle mutant embryos, suggesting contributions from KNOLLE-independent SNARE complexes. Here we show that Qa-SNARE SYP132, having counterparts in lower plants, functionally overlaps with the flowering plant-specific KNOLLE. SYP132 mutation causes cytokinesis defects, knolle syp132 double mutants consist of only one or a few multi-nucleate cells, and SYP132 has the same SNARE partners as KNOLLE. SYP132 and KNOLLE also have non-overlapping functions in secretion and in cellularization of the embryo-nourishing endosperm resulting from double fertilization unique to flowering plants. Evolutionarily ancient non-specialized SNARE complexes originating in algae were thus amended by the appearance of cytokinesis-specific SNARE complexes, meeting the high demand for membrane-fusion capacity during endosperm cellularization in angiosperms. In plant cytokinesis, SNARE complexes mediate vesicle fusion for partitioning membrane formation. Park et al. show that evolutionarily ancient Qa-SNARE SYP132 functionally overlaps with flowering plant- and cytokinesis-specific Qa-SNARE KNOLLE. KNOLLE acquisition may have been due to high demand for membrane-fusion capacity during endosperm cellularization in flowering plants

    J. Cell Sci.

    No full text

    NET: Network Electron Microscopy TĂŒbingen

    No full text

    Endocytosis and secretion in trypanosomatid parasites - Tumultuous traffic in a pocket

    No full text
    Trypanosomatids are flagellated protozoan parasites of invertebrates, vertebrates and plants. Some species, found in the subtropics and tropics, cause chronic diseases in humans and domestic animals. The surface of the trypanosomatid provides a shield against environmental challenges, ligands for interaction with host cells, as well as receptors and transporters for the uptake of nutrients. Communication between the parasite and its environment is confined to the flagellar pocket, an invagination of the plasma membrane around the base of the flagellum. In this review, the authors discuss endocytosis, secretion and membrane trafficking in Trypanosoma and Leishmania
    • 

    corecore