9 research outputs found

    Hypoxic Epithelial Necrosis Triggers Neutrophilic Inflammation via IL-1 Receptor Signaling in Cystic Fibrosis Lung Disease

    Get PDF
    Rationale: In many organs, hypoxic cell death triggers sterile neutrophilic inflammation via IL-1R signaling. Although hypoxia is common in airways from patients with cystic fibrosis (CF), its role in neutrophilic inflammation remains unknown. We recently demonstrated that hypoxic epithelial necrosis caused by airway mucus obstruction precedes neutrophilic inflammation in Scnn1b-transgenic (Scnn1b-Tg) mice with CF-like lung disease

    B cell repertoire analysis identifies new antigenic domains on glycoprotein B of human cytomegalovirus which are target of neutralizing antibodies.

    Get PDF
    Human cytomegalovirus (HCMV), a herpesvirus, is a ubiquitously distributed pathogen that causes severe disease in immunosuppressed patients and infected newborns. Efforts are underway to prepare effective subunit vaccines and therapies including antiviral antibodies. However, current vaccine efforts are hampered by the lack of information on protective immune responses against HCMV. Characterizing the B-cell response in healthy infected individuals could aid in the design of optimal vaccines and therapeutic antibodies. To address this problem, we determined, for the first time, the B-cell repertoire against glycoprotein B (gB) of HCMV in different healthy HCMV seropositive individuals in an unbiased fashion. HCMV gB represents a dominant viral antigenic determinant for induction of neutralizing antibodies during infection and is also a component in several experimental HCMV vaccines currently being tested in humans. Our findings have revealed that the vast majority (>90%) of gB-specific antibodies secreted from B-cell clones do not have virus neutralizing activity. Most neutralizing antibodies were found to bind to epitopes not located within the previously characterized antigenic domains (AD) of gB. To map the target structures of these neutralizing antibodies, we generated a 3D model of HCMV gB and used it to identify surface exposed protein domains. Two protein domains were found to be targeted by the majority of neutralizing antibodies. Domain I, located between amino acids (aa) 133-343 of gB and domain II, a discontinuous domain, built from residues 121-132 and 344-438. Analysis of a larger panel of human sera from HCMV seropositive individuals revealed positivity rates of >50% against domain I and >90% against domain II, respectively. In accordance with previous nomenclature the domains were designated AD-4 (Dom II) and AD-5 (Dom I), respectively. Collectively, these data will contribute to optimal vaccine design and development of antibodies effective in passive immunization

    Ca M

    No full text
    CaMKII was suggested to mediate ischemic myocardial injury and adverse cardiac remodeling. Here, we investigated the roles of different CaMKII isoforms and splice variants in ischemia/reperfusion (I/R) injury by the use of new genetic CaMKII mouse models. Although CaMKIIΎC was upregulated 1 day after I/R injury, cardiac damage 1 day after I/R was neither affected in CaMKIIΎ-deficient mice, CaMKIIΎ-deficient mice in which the splice variants CaMKIIΎB and C were re-expressed, nor in cardiomyocyte-specific CaMKIIΎ/γ double knockout mice (DKO). In contrast, 5 weeks after I/R, DKO mice were protected against extensive scar formation and cardiac dysfunction, which was associated with reduced leukocyte infiltration and attenuated expression of members of the chemokine (C-C motif) ligand family, in particular CCL3 (macrophage inflammatory protein-1α, MIP-1α). Intriguingly, CaMKII was sufficient and required to induce CCL3 expression in isolated cardiomyocytes, indicating a cardiomyocyte autonomous effect. We propose that CaMKII-dependent chemoattractant signaling explains the effects on post-I/R remodeling. Taken together, we demonstrate that CaMKII is not critically involved in acute I/R-induced damage but in the process of post-infarct remodeling and inflammatory processes

    The impact of TP53 co-mutations and immunologic microenvironment on outcome of lung cancer with EGFR exon 20 insertions

    No full text
    Background: EGFR exon20 insertions (ex20ins) are targeted by novel compounds in non-small-cell lung cancer (NSCLC). However, data about outcome under conventional therapies and the influence of molecular features are scarce. Patients and methods: We retrospectively analysed 118 patients with evaluation of radiologic response based on RECIST v1.1. TP53 status was available for 88 cases. Results: Platinum doublets and chemoimmunotherapy showed similar response rates (20-25%), disease control rates (80%) and median progression-free survival (mPFS, asymptotic to 7 months), which were longer compared to monochemotherapy (9%, 59%, 4.1 months), EGFR inhibitors (0%, 46%, 3.0) and PD-(L)1 inhibitors (0%, 30%, 2.1; p 1 year) occasionally occurred under EGFR inhibitors for both 'near-' and 'far-loop' variants. Conclusions: Platinum doublets and chemoimmunotherapy have the highest activity with ORR of 20-25% and mPFS of approximately 7 months, regardless of the cytotoxic partner, while PD-(L)1 inhibitors show limited efficacy. TP53 mutations, brain metastases and a lower tumour CD8/Th1-cell ratio are independently associated with shorter survival. (C) 2022 Elsevier Ltd. All rights reserved

    Bi-allelic variants in SPATA5L1 lead to intellectual disability, spastic-dystonic cerebral palsy, epilepsy, and hearing loss

    No full text
    Spermatogenesis-associated 5 like 1 (SPATA5L1) represents an orphan gene encoding a protein of unknown function. We report 28 bi-allelic variants in SPATA5L1 associated with sensorineural hearing loss in 47 individuals from 28 (26 unrelated) families. In addition, 25/47 affected individuals (53%) presented with microcephaly, developmental delay/intellectual disability, cerebral palsy, and/or epilepsy. Modeling indicated damaging effect of variants on the protein, largely via destabilizing effects on protein domains. Brain imaging revealed diminished cerebral volume, thin corpus callosum, and periventricular leukomalacia, and quantitative volumetry demonstrated significantly diminished white matter volumes in several individuals. Immunofluorescent imaging in rat hippocampal neurons revealed localization of Spata511 in neuronal and glial cell nuclei and more prominent expression in neurons. In the rodent inner ear, Spata511 is expressed in the neurosensory hair cells and inner ear supporting cells. Transcriptomic analysis performed with fibroblasts from affected individuals was able to distinguish affected from controls by principal components. Analysis of differentially expressed genes and networks suggested a role for SPATA5L1 in cell surface adhesion receptor function, intracellular focal adhesions, and DNA replication and mitosis. Collectively, our results indicate that bi-allelic SPATA5L1 variants lead to a human disease characterized by sensorineural hearing loss (SNHL) with or without a nonprogressive mixed neurodevelopmental phenotype

    11th German Conference on Chemoinformatics (GCC 2015)

    No full text
    corecore