2,633 research outputs found

    The Truth in Compatibilism and the truth of Libertarianism

    Get PDF
    The paper offers the outlines of a response to the often-made suggestion is that it is impossible to see how indeterminism could possibly provide us with anything that we might want in the way of freedom, anything that could really amount to control, as opposed merely to an openness in the flow of reality that would constitute merely the injection of chance, or randomness, into the unfolding of the processes which underlie our activity. It is suggested that the best first move for the libertarian is to make a number of important concessions to the compatibilist. It should be conceded, in particular, that certain sorts of alternative possibilities are neither truly available to real, worldly agents, nor required in order that those agents should act freely; and it should be admitted also that it is the compatibilist who tends to give the most plausible sorts of analyses of many of the ‘can’ and ‘could have’ statements which seem to need to be assertible of those agents we regard as free. But these concessions do not bring compatibilism itself in their wake. The most promising version of libertarianism, it is argued, should be based on the idea that agency itself (and not merely some special instances of it which we might designate with the honorific appellation ‘free’) is inconsistent with determinism. This version of libertarianism, it is claimed, can avoid the objection that indeterminism is as difficult to square with true agential control as determinism can sometimes seem to be

    Competency-based Outcomes Assessment for Agricultural Engineering Programs

    Get PDF
    The ABET 2000 criteria have provided the impetus for the Agricultural and Biosystems Engineering Department at Iowa State University to re-structure the assessment of its undergraduate agricultural engineering program. We linked ABET student outcomes to validated work-place competencies with key actions that are measurable in academic and experiential education environments. Two tools are being used to assess competencies: an on-line assessment system and electronic portfolios developed by each student as a requirement for graduation. This paper discusses the overall philosophy of our assessment program, how the assessment tools are being implemented, and the implications for change in the curriculum

    Estimation of Optimal Biomass Removal Rate Based on Tolerable Soil Erosion for Single-Pass Crop Grain and Biomass Harvesting System

    Get PDF
    As the demand for biomass feedstocks grows, it is likely that agricultural residue will be removed in a way that compromises soil sustainability due to increased soil erosion, depletion of organic matter, and deterioration of soil physical characteristics. Since soil erosion from agricultural fields depends on several factors including soil type, field terrain, and cropping practices, the amount of biomass that can be removed while maintaining soil tilth varies substantially over space and time. The RUSLE2 soil erosion model, which takes into account these spatio-temporal variations, was used to estimate tolerable agricultural biomass removal rates at field scales for a single-pass crop grain and biomass harvesting system. Soil type, field topography, climate data, management practices, and conservation practices were stored in individual databases on a state or county basis. Geographic position of the field was used as a spatial key to access the databases to select site-specific information such as soil, topography, and management related parameters. These parameters along with actual grain yield were provided as inputs to the RUSLE2 model to calculate yearly soil loss per unit area of the field. An iterative technique was then used to determine site-specific tolerable biomass removal rates that keep the soil loss below the soil loss thresholds (T) of the field. The tolerable removal rates varied substantially with field terrain, crop management practices, and soil type. At a location in a field in Winnebago county, Iowa, with ~1% slope and conventional tillage practices, up to 98% of the 11 Mg ha-1 total above-ground biomass was available for collection with negligible soil loss. There was no biomass available to remove with conventional tillage practices on steep slopes, as in a field in Crawford county, Iowa, with a 12.6% slope. If no-till crop practices were adopted, up to 70% of the total above-ground biomass could be collected at the same location with 12.6% slope. In the case of a soybean-corn rotation with no-till practices, about 98% of total biomass was available for removal at the locations in the Winnebago field with low slopes, whereas 77% of total biomass was available at a location in the Crawford field with a 7.5% slope. Tolerable removal rates varied substantially over an agricultural field, which showed the importance of site-specific removal rate estimation. These removal rates can be useful in developing recommended rates for producers to use during a single-pass crop grain and biomass harvesting operation. However, this study only considered the soil erosion tolerance level in estimating biomass removal rates. Before providing the final recommendation to end users, further investigations will be necessary to study the potential effects of continuous biomass removal on organic matter content and other biophysical properties of the soil
    • …
    corecore