20,953 research outputs found

    Environmental charging of spacecraft-tests of thermal control materials for use on the global positioning system flight space vehicle. Part 2: Specimen 6 to 9

    Get PDF
    The NASA/USAF program on the Environmental Charging of Spacecraft Surfaces consists, in part, of experimental efforts directed toward evaluating the response of materials to the environmental charged particle flux. Samples of thermal blankets of the type to be used on the Global Positioning System Flight Space Vehicles were tested to determine their response to electron flux. The primary result observed was that no discharges were obtained with the quartz-fiber-fabric-covered multilayer insulation specimen. The taped aluminized polyester grounding system used on all specimens did not appear to grossly deteriorate with time; however, the specimens require specific external pressure to maintain constant grounding system resistance

    Ion laser plasmas

    Get PDF
    The typical noble gas ion laser plasma consists of a high-current-density glow discharge in a noble gas, in the presence of a magnetic field. Typical CW plasma conditions are current densities of 100 to 2000 A/cm^2, tube diameters of 1 to 10 mm, filling pressures of 0.1 to 1.0 torr, and an axial magnetic field of the order of 1000 G. Under these conditions the typical fractional ionization is about 2 percent and the electron temperature between 2 and 4 eV. Pulsed ion lasers typically use higher current densities and lower operating pressures. This paper discusses the properties of ion laser plasmas, in terms of both their external discharge parameters and their internal ion and excited state densities. The effect these properties have on laser operation is explained. Many interesting plasma effects, which are important in ion lasers, are given attention. Among these are discharge nonuniformity near tube constrictions, extremely high ion radial drift velocities, wall losses intermediate between ambipolar diffusion and free fall, gas pumping effects, and radiation trapping. The current status of ion laser technology is briefly reviewed

    Asteroseismology of red giants: photometric observations of Arcturus by SMEI

    Full text link
    We present new results on oscillations of the K1.5 III giant Arcturus (alpha Boo), from analysis of just over 2.5 yr of precise photometric observations made by the Solar Mass Ejection Imager (SMEI) on board the Coriolis satellite. A strong mode of oscillation is uncovered by the analysis, having frequency 3.51+/-0.03 micro-Hertz. By fitting its mode peak, we are able offer a highly constrained direct estimate of the damping time (tau = 24+/-1 days). The data also hint at the possible presence of several radial-mode overtones, and maybe some non-radial modes. We are also able to measure the properties of the granulation on the star, with the characteristic timescale for the granulation estimated to be 0.50+/-0.05 days.Comment: 6 pages, 5 figures; accepted for publication in MNRAS Letter

    Environmental charging tests of spacecraft thermal control louvers

    Get PDF
    The environmental charging of spacecraft surfaces program consists, in part, of experimental evaluation of material response to the environmental charged particle flux. A flight type spacecraft thermal control louver assembly has been tested in an electron flux. The louver blade surface potential, the louver assembly currents, and the relatively high number of discharges observed in the electron environment are self-consistent results. The unexpected result of this testing was the flutter observed when the louvers were closed. The flutter is about 1 to 2 Hz in frequency and is probably electrostatically induced

    Testing of typical spacecraft materials in a simulated substorm environment

    Get PDF
    The test specimens were spacecraft paints, silvered Teflon, thermal blankets, and solar array segments. The samples, ranging in size from 300 to 1000 sq cm were exposed to monoenergetic electron energies from 2 to 20 keV at a current density of 1 NA/sq cm. The samples generally behaved as capacitors with strong voltage gradient at their edges. The charging characteristics of the silvered Teflon, Kapton, and solar cell covers were controlled by the secondary emission characteristics. Insulators that did not discharge were the spacecraft paints and the quartz fiber cloth thermal blanket sample. All other samples did experience discharges when the surface voltage reached -8 to -16kV. The discharges were photographed. The breakdown voltage for each sample was determined and the average energy lost in the discharge was computed

    Design guidelines for assessing and controlling spacecraft charging effects

    Get PDF
    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined

    Plasma interactions and surface/material effects

    Get PDF
    A discussion on plasma interactions and surface/material effects is summarized. The key issues in this area were: (1) the lack of data on the material properties of common spacecraft surface materials; (2) lack of understanding of the contamination and decontamination processes; and (3) insufficient analytical tools to model synergistic phenomena related to plasma interactions. Without an adequate database of material properties, accurate system performance predictions cannot be made. The interdisciplinary nature of the surface-plasma interactions area makes it difficult to plan and maintain a coherent theoretical and experimental program. The shuttle glow phenomenon is an excellent example of an unanticipated, complex interaction involving synergism between surface and plasma effects. Building an adequate technology base for understanding and predicting surface-plasma interactions will require the coordinated efforts of engineers, chemists, and physicists. An interdisciplinary R and D program should be organized to deal with similar problems that the space systems of the 21st century may encounter
    • …
    corecore