58 research outputs found
Proteomic identification of heterogeneous nuclear ribonucleoprotein L as a novel component of SLM/Sam68 nuclear bodies
Background: Active pre-mRNA splicing occurs co-transcriptionally, and takes place throughout the nucleoplasm of eukaryotic cells. Splicing decisions are controlled by networks of nuclear RNA-binding proteins and their target sequences, sometimes in response to signalling pathways. Sam68 (Src-associated in mitosis 68 kDa) is the prototypic member of the STAR (Signal Transduction and Activation of RNA) family of RNA-binding proteins, which regulate splicing in response to signalling cascades. Nuclear Sam68 protein is concentrated within subnuclear organelles called SLM/Sam68 Nuclear Bodies (SNBs), which also contain some other splicing regulators, signalling components and nucleic acids.
Results: We used proteomics to search for the major interacting protein partners of nuclear Sam68. In addition to Sam68 itself and known Sam68-associated proteins (heterogeneous nuclear ribonucleoproteins hnRNP A1, A2/B1 and G), we identified hnRNP L as a novel Sam68-interacting protein partner. hnRNP L protein was predominantly present within small nuclear protein complexes approximating to the expected size of monomers and dimers, and was quantitatively associated with nucleic acids. hnRNP L spatially co-localised with Sam68 as a novel component of SNBs and was also observed within the general nucleoplasm. Localisation within SNBs was highly specific to hnRNP L and was not shared by the closely-related hnRNP LL protein, nor any of the other Sam68-interacting proteins we identified by proteomics. The interaction between Sam68 and hnRNP L proteins was observed in a cell line which exhibits low frequency of SNBs suggesting that this association also takes place outside SNBs. Although ectopic expression of hnRNP L and Sam68 proteins independently affected splicing of CD44 variable exon v5 and TJP1 exon 20 minigenes, these proteins did not, however, co-operate with each other in splicing regulation of these target exons.
Conclusion: Here we identify hnRNP L as a novel SNB component. We show that, compared with other identified Sam68-associated hnRNP proteins and hnRNP LL, this co-localisation within SNBs is specific to hnRNP L. Our data suggest that the novel Sam68-hnRNP L protein interaction may have a distinct role within SNBs
Application of a physically based model to forecast shallow landslides at a regional scale
<p>In this work, we apply a physically based model, namely the
HIRESSS (HIgh REsolution Slope Stability Simulator) model, to forecast the
occurrence of shallow landslides at the regional scale. HIRESSS is a physically
based distributed slope stability simulator for analyzing shallow landslide
triggering conditions during a rainfall event. The modeling software is made up of two
parts: hydrological and geotechnical. The hydrological model is based on an
analytical solution from an approximated form of the Richards equation, while
the geotechnical stability model is based on an infinite slope model that
takes the unsaturated soil condition into account. The test area is a portion
of the Aosta Valley region, located in the northwest of the Alpine mountain chain. The
geomorphology of the region is characterized by steep slopes with elevations
ranging from 400 m a.s.l. on the Dora Baltea River's floodplain to
4810 m a.s.l. at Mont Blanc. In the study area, the mean annual
precipitation is about 800–900 mm. These features make the territory
very prone to landslides, mainly shallow rapid landslides and rockfalls.
In order to apply the model and to increase its reliability, an in-depth
study of the geotechnical and hydrological properties of hillslopes
controlling shallow landslide formation was conducted. In particular, two
campaigns of on site measurements and laboratory experiments were performed
using 12Â survey points. The data collected contributed to the generation of an input map
of parameters for the HIRESSS model. In order to consider the effect of
vegetation on slope stability, the soil reinforcement due to the presence of
roots was also taken into account; this was done based on vegetation maps and
literature values of root cohesion. The model was applied using back analysis
for two past events that affected the Aosta Valley region between 2008 and
2009, triggering several fast shallow landslides. The validation of the
results, carried out using a database of past landslides, provided good
results and a good prediction accuracy for the HIRESSS model from both a
temporal and spatial point of view.</p
IT-SNOW: a snow reanalysis for Italy blending modeling, in situ data, and satellite observations (2010-2021)
We present IT-SNOW, a serially complete and multi-year snow reanalysis for Italy (similar to 301 x 10(3) km(2)) - a transitional continental-to-Mediterranean region where snow plays an important but still poorly constrained societal and ecological role. IT-SNOW provides similar to 500 m daily maps of snow water equivalent (SWE), snow depth, bulk snow density, and liquid water content for the initial period 1 September 2010-31 August 2021, with future updates envisaged on a regular basis. As the output of an operational chain employed in real-world civil protection applications (S3M Italy), IT-SNOW ingests input data from thousands of automatic weather stations, snow-covered-area maps from Sentinel-2, MODIS (Moderate Resolution Imaging Spectroradiometer), and H SAF products, as well as maps of snow depth from the spatialization of over 350 on-the-ground snow depth sensors. Validation using Sentinel-1-based maps of snow depth and a variety of independent, in situ snow data from three focus regions (Aosta Valley, Lombardy, and Molise) show little to no mean bias compared to the former, and root mean square errors are of the typical order of 30-60 cm and 90-300 mm for in situ, measured snow depth and snow water equivalent, respectively. Estimates of peak SWE by IT-SNOW are also well correlated with annual streamflow at the closure section of 102 basins across Italy (0.87), with ratios between peak water volume in snow and annual streamflow that are in line with expectations for this mixed rain-snow region (22 % on average and 12 % median). Examples of use allowed us to estimate 13.70 +/- 4.9 Gm3 of water volume stored in snow across the Italian landscape at peak accumulation, which on average occurs on 4 March +/- 10 d. Nearly 52 % of the mean seasonal SWE is accumulated across the Po river basin, followed by the Adige river (23 %), and central Apennines (5 %). IT-SNOW is freely available at https://doi.org/10.5281/zenodo.7034956 (Avanzi et al., 2022b) and can contribute to better constraining the role of snow for seasonal to annual water resources - a crucial endeavor in a warming and drier climate
The Germ Cell Nuclear Proteins hnRNP G-T and RBMY Activate a Testis-Specific Exon
The human testis has almost as high a frequency of alternative splicing events as brain. While not as extensively studied as brain, a few candidate testis-specific splicing regulator proteins have been identified, including the nuclear RNA binding proteins RBMY and hnRNP G-T, which are germ cell-specific versions of the somatically expressed hnRNP G protein and are highly conserved in mammals. The splicing activator protein Tra2β is also highly expressed in the testis and physically interacts with these hnRNP G family proteins. In this study, we identified a novel testis-specific cassette exon TLE4-T within intron 6 of the human transducing-like enhancer of split 4 (TLE4) gene which makes a more transcriptionally repressive TLE4 protein isoform. TLE4-T splicing is normally repressed in somatic cells because of a weak 5′ splice site and surrounding splicing-repressive intronic regions. TLE4-T RNA pulls down Tra2β and hnRNP G proteins which activate its inclusion. The germ cell-specific RBMY and hnRNP G-T proteins were more efficient in stimulating TLE4-T incorporation than somatically expressed hnRNP G protein. Tra2b bound moderately to TLE4-T RNA, but more strongly to upstream sites to potently activate an alternative 3′ splice site normally weakly selected in the testis. Co-expression of Tra2β with either hnRNP G-T or RBMY re-established the normal testis physiological splicing pattern of this exon. Although they can directly bind pre-mRNA sequences around the TLE4-T exon, RBMY and hnRNP G-T function as efficient germ cell-specific splicing co-activators of TLE4-T. Our study indicates a delicate balance between the activity of positive and negative splicing regulators combinatorially controls physiological splicing inclusion of exon TLE4-T and leads to modulation of signalling pathways in the testis. In addition, we identified a high-affinity binding site for hnRNP G-T protein, showing it is also a sequence-specific RNA binding protein
In vitro splicing of adenovirus E1A transcripts: characterization of novel reactions and of multiple branch points abnormally far from the 3' splice site.
During the analysis of the in vitro alternative splicing of the natural E1A transcript of adenovirus, other minor reactions were detected (Schmitt et al., 1987, Cell 50, 31-39). We report here their characterization. The first reaction concerns the excision of a 216 nucleotide intron delineated by the 9S 5' splice site and a 3' splice site 216 nucleotides downstream. It can occur on the premRNA transcript and the 13S and 12S mRNA species. Strikingly, the reaction uses one of 3 branch points located 51, 55 or 59 residues upstream of the 3' splice site, a distance which is unusually long since all the branch points mapped up to now are located between 18-37 nucleotides of the 3' splice site. The dramatic accumulation of the corresponding lariat intermediates, likely related to this long spacing indicates that the second splicing step is relatively unefficient. The second kind of reaction analysed is a cryptic splicing which uses a 3' splice site generated by the junction of the 13S mRNA exons, and leads to the formation of psi 12S and psi 9S mRNAs. In vitro, this reaction occurs only from a 13S mRNA transcript, and not from the 13S mRNA newly formed in the splicing assay, consistent with what has been observed in vivo. Thus, both the well known alternative and the minor reactions occurring in vivo from E1A premRNA and mRNAs are detected in vitro, implying that most of the alternative splicing machinery is reconstituted in the in vitro system
Spectromètre multicanal numérique pour la mesure de la température ionique d'un plasma récurrent
A multichannel digital spectrometer has been designed for the evaluation of the ionic temperature in recurrent plasma. The Fabry-Perot interferometric disperser, the 12 spectral channels, and the digital system for storage and output of the results were chosen because of the high sensitivity requirements (very weak light from the plasma) and the flexibility of the digital electronics. The problem of error given by a multichannel spectrometer is discussed and compared to the experimental results obtained after smoothing. Finally, we present the first results of measurements from the CIRCE 25 kW device.On décrit un spectromètre multicanal numérique construit pour la mesure de la température ionique d'un plasma récurrent. Le choix du disperseur interférentiel Fabry-Pérot, de 12 voies spectrales et du système numérique d'acquisition et de présentation des résultats s'est imposé à cause de l'extrême sensibilité demandée (plasma peu lumineux) et de la grande souplesse d'emploi de l'électronique numérique. L'erreur sur la mesure de la température ionique donnée par un spectromètre multicanal est étudiée et est comparée à celle trouvée expérimentalement après lissage des profils enregistrés. Enfin on donne les premiers résultats obtenus sur l'expérience CIRCE 25 kW
Spectromètre multicanal numérique pour la mesure de la température ionique d'un plasma récurrent
On décrit un spectromètre multicanal numérique construit pour la mesure de la température ionique d'un plasma récurrent. Le choix du disperseur interférentiel Fabry-Pérot, de 12 voies spectrales et du système numérique d'acquisition et de présentation des résultats s'est imposé à cause de l'extrême sensibilité demandée (plasma peu lumineux) et de la grande souplesse d'emploi de l'électronique numérique. L'erreur sur la mesure de la température ionique donnée par un spectromètre multicanal est étudiée et est comparée à celle trouvée expérimentalement après lissage des profils enregistrés. Enfin on donne les premiers résultats obtenus sur l'expérience CIRCE 25 kW
- …