3 research outputs found

    Immunization with human (h)AQP4<sub>281-300</sub> leads to an expansion of antigen-specific CD4<sup>+</sup> T cells <i>in vivo</i>, and an Ig isotype switch in <i>HLA-DRB1*03</i>:<i>01</i> transgenic mice.

    No full text
    <p>(A) Following immunization with human (h)AQP4<sub>281-300</sub>, an expansion of antigen-specific CD4<sup>+</sup> T helper cells was detected by tetramer staining of lymph node cells. The fluorescent signal of <i>HLA-DRB1*03</i>:<i>01</i>-loaded tetramers minus the fluorescent signal of empty <i>HLA-DRB1*03</i>:<i>01</i> tetramers is shown. CD4<sup>+</sup> T helper cells provide soluble mediators that drive B cell differentiation immunoglobulin (Ig) class switching. To determine whether hAQP4<sub>281-300</sub>-reactive CD4<sup>+</sup> T cells are capable of causing IgM to IgG isotype switching in <i>HLA-DRB1*03</i>:<i>01</i> transgenic mice, the concentration of Ig against hAQP4<sub>281-300</sub>, mAQP4284-299, or with whole-length hAQP4 protein in serum of immunized mice was quantified longitudinally. Since the NMO-IgG is a human IgG1 isotype, both, the murine IgG2a and IgG2b isotype were examined as they have similar properties with regard to complement binding and the Fcγ receptor. A switch from IgM to IgG2b was detected in mice immunized with hAQP4<sub>281-300</sub> peptide with regard to (B) antibody responses against hAQP4<sub>281-300</sub> and (C) whole-length AQP4 protein. An Ig isotype switch from IgM to IgG2b was also detectable in mice immunized with whole-length AQP4 protein with regard to (D) antibody responses against hAQP4<sub>281-300</sub> and (E) whole-length AQP4 protein.</p

    <i>HLA-DRB1*03</i>:<i>01</i> transgenic mice are disease resistant to active immunization with human aquaporin 4 (hAQP4), and adoptive transfer of hAQP4-specific T cells.

    No full text
    <p>(A) <i>HLA-DRB1*03</i>:<i>01</i> mice were actively immunized with proteolipid protein (PLP)<sub>91-110</sub> (100 μg/100 μl/mouse; positive control [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0152720#pone.0152720.ref025" target="_blank">25</a>]), or varying AQP4 antigens*(whole-length hAQP4 protein, hAQP4<sub>281-300</sub>, murine (m)AQP4<sub>281-300</sub>, hAQP4<sub>281-300</sub> with a Quil-A Incomplete Freund Adjuvant (IFA) booster on day 14 post-immunization, mAQP4<sub>281-300</sub> with a Quil-A IFA booster on day 14 post immunization, and hAQP4<sub>281-300</sub> plus mAQP4<sub>281-300</sub>) emulsified in Complete Freund Adjuvant (CFA). Immunization with a positive control proteolipid protein (PLP)<sub>91-110</sub>, a dominant encephalitogenic determinant in <i>HLA-DRB1*03</i>:<i>01</i> led to typical EAE. (B) Lymph node cells taken from <i>HLA-DRB1*03</i>:<i>01</i> mice immunized with hAQP4<sub>281-300</sub> or mAQP4<sub>281-300</sub> were restimulated for three days and passively transferred into <i>HLA-DRB1*03</i>:<i>01</i> mice. None of these experimental approaches resulted in clinical disease. (C) Paraffin sections were stained with haematoxlin eosin (H&E) and luxol fast blue (LFB). Representative sections of the spinal cords from PLP<sub>91-110</sub> and hAQP4<sub>281-300</sub> immunized mice are shown. On histopathological examination there were no visible signs of cellular infiltration, inflammation, or demyelination within the brain and spinal cord in any experimental paradigms other than in active immunization with PLP<sub>91-110</sub>, the dominant encephalitogenic determinant in <i>HLA-DRB1*03</i>:<i>01</i> that led to typical EAE (spinal cord shown; inflammatory infiltrates and areas of demyelination are indicated by black arrows). (D) Fifteen days post immunization of <i>HLA-DRB1*03</i>:<i>01</i> transgenic mice with PLP<sub>91-110</sub> or hAQP4<sub>281-300</sub>, pupillary reflex was measured via a mouse pupillometry. Mice actively immunized with hAQP4<sub>281-300</sub> and the control antigen PLP<sub>91-110</sub> did not show altered pupillary responses.</p

    Human (h)AQP4<sub>284-299</sub> Alanine Scanning Peptides.

    No full text
    <p>The immunogenic region of hAQP4<sub>281-300</sub>, hAQP4<sub>284-299</sub>, was utilized to generate alanine scanning peptides at which each peptide sequence has a single alanine residue mutation.</p
    corecore