1,783 research outputs found

    Ge Detectors and 0νββ0\nu\beta\beta: The Search for Double Beta Decay with Germanium Detectors: Past, Present and Future

    Get PDF
    High Purity Germanium Detectors have excellent energy resolution; the best among the technologies used in double beta decay. Since neutrino-less double beta decay hinges on the search for a rare peak upon a background continuum, this strength has enabled the technology to consistently provide leading results. The Ge crystals at the heart of these experiments are very pure; they have no measurable U or Th contamination. The added efforts to reduce the background associated with electronics, cryogenic cooling, and shielding have been very successful, leading to the longevity of productivity. The first experiment published in 1967 by the Milan group of Fiorini, established the benchmark half-life limit >3×1020>3\times10^{20} yr. More recently, the \MJ\ and GERDA collaborations have developed new detector technologies that optimize the pulse waveform analysis. As a result, the GERDA collaboration refuted the claim of observation with a revolutionary approach to shielding by immersing the detectors directly in radio-pure liquid argon. In 2018, the \MJ\ collaboration, using a classic vacuum cryostat and high-Z shielding, achieved a background level near that of GERDA by developing very pure materials for use nearby the detectors. Together, GERDA and \MJ\ have provided limits approaching 102610^{26} yr. In this article, we elaborate on the historical use of Ge detectors for double beta decay addressing the strengths and weaknesses. We also summarize the status and future as many \MJ\ and GERDA collaborators have joined with scientists from other efforts to give birth to the LEGEND collaboration. LEGEND will exploit the best features of both experiments to extend the half-life limit beyond 102810^{28} yr with a ton-scale experiment.Comment: Invited submission to Frontiers in Physic

    Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem.

    Get PDF
    Major ecological realignments are already occurring in response to climate change. To be successful, conservation strategies now need to account for geographical patterns in traits sensitive to climate change, as well as climate threats to species-level diversity. As part of an effort to provide such information, we conducted a climate vulnerability assessment that included all anadromous Pacific salmon and steelhead (Oncorhynchus spp.) population units listed under the U.S. Endangered Species Act. Using an expert-based scoring system, we ranked 20 attributes for the 28 listed units and 5 additional units. Attributes captured biological sensitivity, or the strength of linkages between each listing unit and the present climate; climate exposure, or the magnitude of projected change in local environmental conditions; and adaptive capacity, or the ability to modify phenotypes to cope with new climatic conditions. Each listing unit was then assigned one of four vulnerability categories. Units ranked most vulnerable overall were Chinook (O. tshawytscha) in the California Central Valley, coho (O. kisutch) in California and southern Oregon, sockeye (O. nerka) in the Snake River Basin, and spring-run Chinook in the interior Columbia and Willamette River Basins. We identified units with similar vulnerability profiles using a hierarchical cluster analysis. Life history characteristics, especially freshwater and estuary residence times, interplayed with gradations in exposure from south to north and from coastal to interior regions to generate landscape-level patterns within each species. Nearly all listing units faced high exposures to projected increases in stream temperature, sea surface temperature, and ocean acidification, but other aspects of exposure peaked in particular regions. Anthropogenic factors, especially migration barriers, habitat degradation, and hatchery influence, have reduced the adaptive capacity of most steelhead and salmon populations. Enhancing adaptive capacity is essential to mitigate for the increasing threat of climate change. Collectively, these results provide a framework to support recovery planning that considers climate impacts on the majority of West Coast anadromous salmonids

    Double Beta Decay, Majorana Neutrinos, and Neutrino Mass

    Get PDF
    The theoretical and experimental issues relevant to neutrinoless double-beta decay are reviewed. The impact that a direct observation of this exotic process would have on elementary particle physics, nuclear physics, astrophysics and cosmology is profound. Now that neutrinos are known to have mass and experiments are becoming more sensitive, even the non-observation of neutrinoless double-beta decay will be useful. If the process is actually observed, we will immediately learn much about the neutrino. The status and discovery potential of proposed experiments are reviewed in this context, with significant emphasis on proposals favored by recent panel reviews. The importance of and challenges in the calculation of nuclear matrix elements that govern the decay are considered in detail. The increasing sensitivity of experiments and improvements in nuclear theory make the future exciting for this field at the interface of nuclear and particle physics.Comment: invited submission to Reviews of Modern Physics, higher resolution figures available upon request from authors, Version 2 has fixed typos and some changes after referee report

    Relativistic MHD with Adaptive Mesh Refinement

    Get PDF
    This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference Convex ENO method (CENO) in 3+1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the ∇⋅B=0\nabla\cdot {\bf B}=0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.Comment: 24 pages, 14 figures, 3 table
    • …
    corecore