346 research outputs found

    Interactions with Host Cells Causes Neisseria meningitidis Pili to Become Unglued

    Get PDF
    A commentary on Posttranslational modification of pili upon cell contact triggers N. meningitidis disseminatio

    Near-Field Microwave Microscopy on nanometer length scales

    Full text link
    The Near-Field Microwave Microscope (NSMM) can be used to measure ohmic losses of metallic thin films. We report on the presence of a new length scale in the probe-to- sample interaction for the NSMM. We observe that this length scale plays an important role when the tip to sample separation is less than about 10nm. Its origin can be modeled as a tiny protrusion at the end of the tip. The protrusion causes deviation from a logarithmic increase of capacitance versus decreasing height of the probe above the sample. We model this protrusion as a cone at the end of a sphere above an infinite plane. By fitting the frequency shift of the resonator versus height data (which is directly related to capacitance versus height) for our experimental setup, we find the protrusion size to be 3nm to 5nm. For one particular tip, the frequency shift of the NSMM relative to 2 micrometers away saturates at a value of about -1150 kHz at a height of 1nm above the sample, where the nominal range of sheet resistance values of the sample are 15 ohms to 150 ohms. Without the protrusion, the frequency shift would have followed the logarithmic dependence and reached a value of about -1500 kHz.Comment: 6 pages, 7 figures (included in 6 pages

    Opportunity and Means: Horizontal Gene Transfer from the Human Host to a Bacterial Pathogen

    Get PDF
    The acquisition and incorporation of genetic material between nonmating species, or horizontal gene transfer (HGT), has been frequently described for phylogenetically related organisms, but far less evidence exists for HGT between highly divergent organisms. Here we report the identification and characterization of a horizontally transferred fragment of the human long interspersed nuclear element L1 to the genome of the strictly human pathogen Neisseria gonorrhoeae. A 685-bp sequence exhibiting 98 to 100% identity to copies of the human L1 element was identified adjacent to the irg4 gene in some N. gonorrhoeae genomes. The L1 fragment was observed in ~11% of the N. gonorrhoeae population sampled but was not detected in Neisseria meningitidis or commensal Neisseria isolates. In addition, N. gonorrhoeae transcripts containing the L1 sequence were detected by reverse transcription-PCR, indicating that an L1-derived gene product may be produced. The high degree of identity between human and gonococcal L1 sequences, together with the absence of L1 sequences from related Neisseria species, indicates that this HGT event occurred relatively recently in evolutionary history. The identification of L1 sequences in N. gonorrhoeae demonstrates that HGT can occur between a mammalian host and a resident bacterium, which has important implications for the coevolution of both humans and their associated microorganisms

    A real-time semi-quantitative RT–PCR assay demonstrates that the pilE sequence dictates the frequency and characteristics of pilin antigenic variation in Neisseria gonorrhoeae

    Get PDF
    A semi-quantitative real-time RT–PCR assay was designed to measure gonococcal pilin antigenicvariation (SQ-PCR Av assay). This assay employs 17 hybridization probe sets that quantitate subpopulations of pilin transcripts carrying different silent pilin copy sequences and one set that detects total pilE transcript levels. Mixtures of a DNA standard carrying the silent copy being detected and a clone encoding the starting pilE sequence, which is the majority pilE template, provided amplification curves that closely matched the experimental data and allowed an analysis of the contribution of different silent pilin copies to variation. The SQ-PCR Av assay was verified using DNA sequence analysis to demonstrate that this methodology allowed an accurate analysis of pilin variation. Both assays showed that with a specific starting pilE sequence, only a subset of the silent pilin copies recombine into pilE at a detectable level, and that this limited subset was reproducibly detected in replicate cultures. When an isogenic pilE sequence variant was examined using both assays, a new subset of silent copy sequences were detected recombining into pilE and the overall frequency of variation was increased. Thus, the parental pilE sequence influences the frequency of variation and the repertoire of pilin variants produced

    Natural and Induced Mitochondrial Phosphate Carrier Loss: DIFFERENTIAL DEPENDENCE OF MITOCHONDRIAL METABOLISM AND DYNAMICS AND CELL SURVIVAL ON THE EXTENT OF DEPLETION.

    Get PDF
    The relevance of mitochondrial phosphate carrier (PiC), encoded by SLC25A3, in bioenergetics is well accepted. However, little is known about the mechanisms mediating the cellular impairments induced by pathological SLC25A3 variants. To this end, we investigated the pathogenicity of a novel compound heterozygous mutation in SLC25A3 First, each variant was modeled in yeast, revealing that substituting GSSAS for QIP within the fifth matrix loop is incompatible with survival on non-fermentable substrate, whereas the L200W variant is functionally neutral. Next, using skin fibroblasts from an individual expressing these variants and HeLa cells with varying degrees of PiC depletion, PiC loss of ∼60% was still compatible with uncompromised maximal oxidative phosphorylation (oxphos), whereas lower maximal oxphos was evident at ∼85% PiC depletion. Furthermore, intact mutant fibroblasts displayed suppressed mitochondrial bioenergetics consistent with a lower substrate availability rather than phosphate limitation. This was accompanied by slowed proliferation in glucose-replete medium; however, proliferation ceased when only mitochondrial substrate was provided. Both mutant fibroblasts and HeLa cells with 60% PiC loss showed a less interconnected mitochondrial network and a mitochondrial fusion defect that is not explained by altered abundance of OPA1 or MFN1/2 or relative amount of different OPA1 forms. Altogether these results indicate that PiC depletion may need to be profound (\u3e85%) to substantially affect maximal oxphos and that pathogenesis associated with PiC depletion or loss of function may be independent of phosphate limitation when ATP requirements are not high

    Sprecherlokalisation in Hörgeräten : Wie Hörgeräte Stimmen im Raum orten können

    Get PDF
    Die präzise räumliche Lokalisation von Sprechern im Umfeld eines Hörgerätes ist eine sehr wichtige und sehr rechenintensive Aufgabe, die die Qualität von digitalen Hörhilfen signifikant steigern kann. In diesem Beitrag wird die enge interdisziplinäre Zusammenarbeit zwischen den Entwicklern der Lokalisations-Algorithmen an der Universität Oldenburg und den Hardware-Ingenieuren der Leibniz Universität Hannover präsentiert

    AmpliCoV: Rapid Whole-Genome Sequencing Using Multiplex PCR Amplification and Real-Time Oxford Nanopore MinION Sequencing Enables Rapid Variant Identification of SARS-CoV-2

    Get PDF
    Since the emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) in December 2019, the scientific community has been sharing data on epidemiology, diagnostic methods, and whole-genomic sequences almost in real time. The latter have already facilitated phylogenetic analyses, transmission chain tracking, protein modeling, the identification of possible therapeutic targets, timely risk assessment, and identification of novel variants. We have established and evaluated an amplification-based approach for whole-genome sequencing of SARS-CoV-2. It can be used on the miniature-sized and field-deployable sequencing device Oxford Nanopore MinION, with sequencing library preparation time of 10 min. We show that the generation of 50,000 total reads per sample is sufficient for a near complete coverage (>90%) of the SARS-CoV-2 genome directly from patient samples even if virus concentration is low (Ct 35, corresponding to approximately 5 genome copies per reaction). For patient samples with high viral load (Ct 18–24), generation of 50,000 reads in 1–2 h was shown to be sufficient for a genome coverage of >90%. Comparison to Illumina data reveals an accuracy that suffices to identify virus mutants. AmpliCoV can be applied whenever sequence information on SARS-CoV-2 is required rapidly, for instance for the identification of circulating virus mutants.Peer Reviewe

    Impact of individual-level factors on Ex vivo mycobacterial growth inhibition: Associations of immune cell phenotype, cytomegalovirus-specific response and sex with immunity following BCG vaccination in humans.

    Get PDF
    Understanding factors associated with varying efficacy of Bacillus Calmette-Guérin (BCG) would aid the development of improved vaccines against tuberculosis (TB). In addition, investigation of individual-level factors affecting mycobacterial-specific immune responses could provide insight into confounders of vaccine efficacy in clinical trials. Mycobacterial growth inhibition assays (MGIA) have been developed to assess vaccine immunogenicity ex vivo and provide a measure of immune function against live mycobacteria. In this study, we assessed the impact of immune cell phenotype, cytomegalovirus (CMV)-specific response and sex on ex vivo growth inhibition following historical BCG vaccination in a cohort of healthy individuals (n = 100). A higher frequency of cytokine-producing NK cells in peripheral blood was associated with enhanced ex vivo mycobacterial growth inhibition following historical BCG vaccination. A CMV-specific response was associated with T-cell activation, a risk factor for TB disease and we also observed an association between T-cell activation and ex vivo mycobacterial growth. Interestingly, BCG-vaccinated females in our cohort controlled mycobacterial growth better than males. In summary, our present study has shown that individual-level factors influence capacity to control mycobacterial growth following BCG vaccination and the MGIA could be used as a tool to assess how vaccine candidates may perform in different populations

    Endochondral bone formation in toothless (osteopetrotic) rats: failures of chondrocyte patterning and type X collagen expression

    Get PDF
    The pacemaker of endochondral bone growth is cell division and hypertrophy of chondrocytes. The developmental stages of chondrocytes, characterized by the expression of collagen types II and X, are arranged in arrays across the growth zone. Mutations in collagen II and X genes as well as the absence of their gene products lead to different, altered patterns of chondrocyte stages which remain aligned across the growth plate (GP). Here we analyze GP of rats bearing the mutation toothless (tl) which, apart from bone defects, develop a progressive, severe chondrodystrophy during postnatal weeks 3 to 6. Mutant GP exhibited disorganized, non-aligned chondrocytes and mineralized metaphyseal bone but without cartilage mineralization or cartilaginous extensions into the metaphysis. Expression of mRNA coding for collagen types II (Col II) and X (Col X) was examined in the tibial GP by in situ hybridization. Mutant rats at 2 weeks exhibited Col II RNA expression and some hypertrophied chondrocytes (HC) but no Col X RNA was detected. By 3rd week, HC had largely disappeared from the central part of the mutant GP and Col II RNA expression was present but weak and in 2 separate bands. Peripherally the GP contained HC but without Col X RNA expression. This abnormal pattern was exacerbated by the fourth week. Bone mineralized but cartilage in the GP did not. These data suggest that the tl mutation involves a regulatory function for chondrocyte maturation, including Col X RNA synthesis and mineralization, and that the GP abnormalities are related to the Col X deficiency. The differences in patterning in the tl rat GP compared to direct Col X mutations may be explained by compensatory effects

    The penC mutation conferring antibiotic resistance in Neisseria gonorrhoeae arises from a mutation in the PilQ secretin that interferes with multimer stability: GonococcalpilQmutants with increased antibiotic resistance

    Get PDF
    The penC resistance gene was previously characterized in a FA19 penA mtrR penB gonococcal strain (PR100) as a spontaneous mutation that increased resistance to penicillin and tetracycline. We show here that antibiotic resistance mediated by penC is the result of a Glu-666 to Lys missense mutation in the pilQ gene that interferes with the formation of the SDS-resistant high-molecular-mass PilQ secretin complex, disrupts piliation, and decreases transformation frequency by 50-fold. Deletion of pilQ in PR100 confers the same level of antibiotic resistance as the penC mutation, but increased resistance was observed only in strains containing the mtrR and penB resistance determinants. Site-saturation mutagenesis of Glu-666 revealed that only acidic or amidated amino acids at this position preserved PilQ function. Consistent with early studies suggesting the importance of cysteine residues on stability of the PilQ multimer, mutation of either of the two cysteine residues in FA19 PilQ led to a similar phenotype as penC: increased antibiotic resistance, loss of piliation, intermediate levels of transformation competence, and absence of SDS-resistant PilQ oligomers. These data show that a functional secretin complex can enhance the entry of antibiotics into the cell and suggest that the PilQ oligomer forms a pore in the outer membrane through which antibiotics diffuse into the periplasm
    corecore