5,346 research outputs found

    The effectiveness of thin films in lieu of hyperbolic metamaterials in the near field

    Full text link
    We show that the near-field functionality of hyperbolic metamaterials (HMM), typically proposed for increasing the photonic local density of states (LDOS), can be achieved with thin metal films. Although HMMs have an infinite density of internally-propagating plane-wave states, the external coupling to nearby emitters is severely restricted. We show analytically that properly designed thin films, of thicknesses comparable to the metal size of a hyperbolic metamaterial, yield a LDOS as high as (if not higher than) that of HMMs. We illustrate these ideas by performing exact numerical computations of the LDOS of multilayer HMMs, along with their application to the problem of maximizing near-field heat transfer, to show that thin films are suitable replacements in both cases.Comment: 5 pages, 3 figure

    Fluctuating surface-current formulation of radiative heat transfer: theory and applications

    Full text link
    We describe a novel fluctuating-surface current formulation of radiative heat transfer between bodies of arbitrary shape that exploits efficient and sophisticated techniques from the surface-integral-equation formulation of classical electromagnetic scattering. Unlike previous approaches to non-equilibrium fluctuations that involve scattering matrices---relating "incoming" and "outgoing" waves from each body---our approach is formulated in terms of "unknown" surface currents, laying at the surfaces of the bodies, that need not satisfy any wave equation. We show that our formulation can be applied as a spectral method to obtain fast-converging semi-analytical formulas in high-symmetry geometries using specialized spectral bases that conform to the surfaces of the bodies (e.g. Fourier series for planar bodies or spherical harmonics for spherical bodies), and can also be employed as a numerical method by exploiting the generality of surface meshes/grids to obtain results in more complicated geometries (e.g. interleaved bodies as well as bodies with sharp corners). In particular, our formalism allows direct application of the boundary-element method, a robust and powerful numerical implementation of the surface-integral formulation of classical electromagnetism, which we use to obtain results in new geometries, including the heat transfer between finite slabs, cylinders, and cones

    Radiative heat transfer in nonlinear Kerr media

    Get PDF
    We obtain a fluctuation--dissipation theorem describing thermal electromagnetic fluctuation effects in nonlinear media that we exploit in conjunction with a stochastic Langevin framework to study thermal radiation from Kerr (χ(3)\chi^{(3)}) photonic cavities coupled to external environments at and out of equilibrium. We show that that in addition to thermal broadening due to two-photon absorption,the emissivity of such cavities can exhibit asymmetric,non-Lorentzian lineshapes due to self-phase modulation. When the local temperature of the cavity is larger than that of the external bath, we find that the heat transfer into the bath exceeds the radiation from a corresponding linear black body at the same local temperature. We predict that these temperature-tunable thermal processes can be observed in practical, nanophotonic cavities operating at relatively small temperatures

    Achieving Universal Coverage Through Comprehensive Health Reform: The Vermont Experience

    Get PDF
    Provides an overview of Vermont's comprehensive health reform and the interim results of a two-year evaluation of its impact on the affordability of coverage and access to services, as well as its sustainability. Discusses lessons learned

    High-efficiency degenerate four wave-mixing in triply resonant nanobeam cavities

    Get PDF
    We demonstrate high-efficiency, degenerate four-wave mixing in triply resonant Kerr χ(3)\chi^(3) photonic crystal (PhC) nanobeam cavities. Using a combination of temporal coupled mode theory and nonlinear finite-difference time-domain (FDTD) simulations, we study the nonlinear dynamics of resonant four-wave mixing processes and demonstrate the possibility of observing high-efficiency limit cycles and steady-state conversion corresponding to ≈100\approx 100% depletion of the pump light at low powers, even including effects due to losses, self- and cross-phase modulation, and imperfect frequency matching. Assuming operation in the telecom range, we predict close to perfect quantum efficiencies at reasonably low ∼\sim 50 mW input powers in silicon micrometer-scale cavities

    Casimir forces in the time domain II: Applications

    Full text link
    Our preceding paper introduced a method to compute Casimir forces in arbitrary geometries and for arbitrary materials that was based on a finite-difference time-domain (FDTD) scheme. In this manuscript, we focus on the efficient implementation of our method for geometries of practical interest and extend our previous proof-of-concept algorithm in one dimension to problems in two and three dimensions, introducing a number of new optimizations. We consider Casimir piston-like problems with nonmonotonic and monotonic force dependence on sidewall separation, both for previously solved geometries to validate our method and also for new geometries involving magnetic sidewalls and/or cylindrical pistons. We include realistic dielectric materials to calculate the force between suspended silicon waveguides or on a suspended membrane with periodic grooves, also demonstrating the application of PML absorbing boundaries and/or periodic boundaries. In addition we apply this method to a realizable three-dimensional system in which a silica sphere is stably suspended in a fluid above an indented metallic substrate. More generally, the method allows off-the-shelf FDTD software, already supporting a wide variety of materials (including dielectric, magnetic, and even anisotropic materials) and boundary conditions, to be exploited for the Casimir problem.Comment: 11 pages, 12 figures. Includes additional examples (dispersive materials and fully three-dimensional systems
    • …
    corecore