626 research outputs found
NASA Armstrong Status
Armstrong (formerly Dryden) Flight Research Center continues it's legacy of exciting work in the area of dynamics and control of advanced vehicle concepts. This status presentation highlights the research and technology development that Armstrong's Control and Dynamics branch is performing in the areas of Control of Flexible Structures and Automated Cooperative Trajectories
Future Integrated Systems Concept for Preventing Aircraft Loss-of-Control Accidents
Loss of control remains one of the largest contributors to aircraft fatal accidents worldwide. Aircraft loss-of-control accidents are highly complex in that they can result from numerous causal and contributing factors acting alone or (more often) in combination. Hence, there is no single intervention strategy to prevent these accidents. This paper presents future system concepts and research directions for preventing aircraft loss-of-control accidents
Collapse of Kaluza-Klein Bubbles
Kaluza-Klein theory admits ``bubble" configurations, in which the
circumference of the fifth dimension shrinks to zero on some compact surface. A
three parameter family of such bubble initial data at a moment of time-symmetry
(some including a magnetic field) has been found by Brill and Horowitz,
generalizing the (zero-energy) ``Witten bubble" solution. Some of these data
have negative total energy. We show here that all the negative energy bubble
solutions start out expanding away from the moment of time symmetry, while the
positive energy bubbles can start out either expanding or contracting. Thus it
is unlikely that the negative energy bubbles would collapse and produce a naked
singularity.Comment: 6 pages, plain LaTeX, UMDGR-94-08
Aircraft Loss of Control Causal Factors and Mitigation Challenges
Loss of control is the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding a large number of fatalities in a single event. In response to the rising threat to aviation safety, the NASA Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified the causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. This report describes the study approach, the key causal factors for aircraft loss of control, and recommended mitigation strategies to make near-term impacts, mid-term impacts, and Next Generation Air Transportation System impacts on the loss of control accident statistic
Aircraft Loss of Control Study
Loss of control has become the leading cause of jet fatalities worldwide. Aside from their frequency of occurrence, accidents resulting from loss of aircraft control seize the public s attention by yielding large numbers of fatalities in a single event. In response to the rising threat to aviation safety, NASA's Aviation Safety Program has conducted a study of the loss of control problem. This study gathered four types of information pertaining to loss of control accidents: (1) statistical data; (2) individual accident reports that cite loss of control as a contributing factor; (3) previous meta-analyses of loss of control accidents; and (4) inputs solicited from aircraft manufacturers, air carriers, researchers, and other industry stakeholders. Using these information resources, the study team identified causal factors that were cited in the greatest number of loss of control accidents, and which were emphasized most by industry stakeholders. For each causal factor that was linked to loss of control, the team solicited ideas about what solutions are required and future research efforts that could potentially help avoid their occurrence or mitigate their consequences when they occurred in flight
Lattice Black Holes
We study the Hawking process on lattices falling into static black holes. The
motivation is to understand how the outgoing modes and Hawking radiation can
arise in a setting with a strict short distance cutoff in the free-fall frame.
We employ two-dimensional free scalar field theory. For a falling lattice with
a discrete time-translation symmetry we use analytical methods to establish
that, for Killing frequency and surface gravity satisfying
in lattice units, the continuum Hawking spectrum
is recovered. The low frequency outgoing modes arise from exotic ingoing modes
with large proper wavevectors that "refract" off the horizon. In this model
with time translation symmetry the proper lattice spacing goes to zero at
spatial infinity. We also consider instead falling lattices whose proper
lattice spacing is constant at infinity and therefore grows with time at any
finite radius. This violation of time translation symmetry is visible only at
wavelengths comparable to the lattice spacing, and it is responsible for
transmuting ingoing high Killing frequency modes into low frequency outgoing
modes.Comment: 26 pages, LaTeX, 2 figures included with psfig. Several improvements
in the presentation. One figure added. Final version to appear in Phys.Rev.
NASA Dryden Status: Aerospace Control and Guidance Sub-Committee Meeting 109
NASA Dryden has been engaging in some exciting work that will enable lighter weight and more fuel efficient vehicles through advanced control and dynamics technologies. The main areas of emphasis are Enabling Light-weight Flexible Structures, real time control surface optimization for fuel efficiency and autonomous formation flight. This presentation provides a description of the current and upcoming work in these areas. Additionally, status is for the Dreamchaser pilot training activity and KQ-X autonomous aerial refueling
Downwind Odor Predictions from Four Swine Finishing Barns Using CALPUFF
A collaborative research effort by several institutions is investigating odor emissions from swine production facilities, and the impacts of those emissions on farm neighbours. Trained human receptors were used to measure the downwind odor concentrations from four tunnel ventilated swine barns near Story City, Iowa. Twenty-six measurement events were conducted between June and November 2004 and modeled using a specially coded short time-step version of CALPUFF to predict short time step durations. Source emission measurements and extensive meteorological data were collected along with ambient olfactometry analysis using the Nasal Ranger™ device (St. Croix Sensory, St. Paul MN). Approximately 64% of measured odor generally falls within the range of modeled values. Analysis of measured odor concentration and corresponding meteorology indicate that maximum ambient odor impacts occur with lower ambient temperature during non-turbulent conditions. Analysis of the data set did not yield a strong relationship directly (R2=0.33), but a regression analysis indicated that the modified CALPUFF model yielded a slope or scaling factor of 0.99, indicating overall a good relationship between model and observed. However, when the data is tested with the Spearman’s rank correlation coefficient an rs of 0.17 was calculated, indicating a poor rank correlation and was not significant (p=0.05). Statistical analysis is inconclusive as to whether the results have bias, but indicate large error in the results. Given that there were no scaling or peak to mean ratio adjustments to the model predictions, the results are very promising for predicting odors using CALPUFF
Computing the spectrum of black hole radiation in the presence of high frequency dispersion: an analytical approach
We present a method for computing the spectrum of black hole radiation of a
scalar field satisfying a wave equation with high frequency dispersion. The
method involves a combination of Laplace transform and WKB techniques for
finding approximate solutions to ordinary differential equations. The modified
wave equation is obtained by adding a higher order derivative term suppressed
by powers of a fundamental momentum scale to the ordinary wave equation.
Depending on the sign of this new term, high frequency modes propagate either
superluminally or subluminally. We show that the resulting spectrum of created
particles is thermal at the Hawking temperature, and further that the out-state
is a thermal state at the Hawking temperature, to leading order in , for
either modification.Comment: 26 pages, plain latex, 6 figures included using psfi
Hawking Spectrum and High Frequency Dispersion
We study the spectrum of created particles in two-dimensional black hole
geometries for a linear, hermitian scalar field satisfying a Lorentz
non-invariant field equation with higher spatial derivative terms that are
suppressed by powers of a fundamental momentum scale . The preferred frame
is the ``free-fall frame" of the black hole. This model is a variation of
Unruh's sonic black hole analogy. We find that there are two qualitatively
different types of particle production in this model: a thermal Hawking flux
generated by ``mode conversion" at the black hole horizon, and a non-thermal
spectrum generated via scattering off the background into negative free-fall
frequency modes. This second process has nothing to do with black holes and
does not occur for the ordinary wave equation because such modes do not
propagate outside the horizon with positive Killing frequency. The horizon
component of the radiation is astonishingly close to a perfect thermal
spectrum: for the smoothest metric studied, with Hawking temperature
, agreement is of order at frequency
, and agreement to order persists out to
where the thermal number flux is ). The flux
from scattering dominates at large and becomes many orders of
magnitude larger than the horizon component for metrics with a ``kink", i.e. a
region of high curvature localized on a static worldline outside the horizon.
This non-thermal flux amounts to roughly 10\% of the total luminosity for the
kinkier metrics considered. The flux exhibits oscillations as a function of
frequency which can be explained by interference between the various
contributions to the flux.Comment: 32 pages, plain latex, 16 figures included using psfi
- …