3,880 research outputs found

    Recent Progress in Double Beta Decay

    Full text link
    At least one neutrino has a mass of about 50 meV or larger. However, the absolute mass scale for the neutrino remains unknown. Studies of double beta decay offer hope for determining the absolute mass scale. Furthermore, the critical question: Is the neutrino its own antiparticle? is unanswered. In particular, zero-neutrino double beta decay can address the issues of lepton number conservation, the particle-antiparticle nature of the neutrino, and its mass. A summary of the recent progress in double beta decay, and the related technologies will be discussed in the context of the future double beta decay program.Comment: Invited submission to Mod. Phys. Lett.

    Double Beta Decay

    Get PDF
    The motivation, present status, and future plans of the search for the neutrinoless double beta decay are reviewed. It is argued that, motivated by the recent observations of neutrino oscillations, there is a reasonable hope that neutrinoless double beta decay corresponding to the neutrino mass scale suggested by oscillations, of about 50 meV, actually exists. The challenges to achieve the sensitivity corresponding to this mass scale, and plans to overcome them, are described.Comment: 34 pages, 3 figures included, Submitted to Annu. Rev. Nucl. Part. Sci., vol.5

    Ge Detectors and 0νββ0\nu\beta\beta: The Search for Double Beta Decay with Germanium Detectors: Past, Present and Future

    Get PDF
    High Purity Germanium Detectors have excellent energy resolution; the best among the technologies used in double beta decay. Since neutrino-less double beta decay hinges on the search for a rare peak upon a background continuum, this strength has enabled the technology to consistently provide leading results. The Ge crystals at the heart of these experiments are very pure; they have no measurable U or Th contamination. The added efforts to reduce the background associated with electronics, cryogenic cooling, and shielding have been very successful, leading to the longevity of productivity. The first experiment published in 1967 by the Milan group of Fiorini, established the benchmark half-life limit >3×1020>3\times10^{20} yr. More recently, the \MJ\ and GERDA collaborations have developed new detector technologies that optimize the pulse waveform analysis. As a result, the GERDA collaboration refuted the claim of observation with a revolutionary approach to shielding by immersing the detectors directly in radio-pure liquid argon. In 2018, the \MJ\ collaboration, using a classic vacuum cryostat and high-Z shielding, achieved a background level near that of GERDA by developing very pure materials for use nearby the detectors. Together, GERDA and \MJ\ have provided limits approaching 102610^{26} yr. In this article, we elaborate on the historical use of Ge detectors for double beta decay addressing the strengths and weaknesses. We also summarize the status and future as many \MJ\ and GERDA collaborators have joined with scientists from other efforts to give birth to the LEGEND collaboration. LEGEND will exploit the best features of both experiments to extend the half-life limit beyond 102810^{28} yr with a ton-scale experiment.Comment: Invited submission to Frontiers in Physic

    Transverse fields to tune an Ising-nematic quantum critical transition

    Full text link
    The paradigmatic example of a continuous quantum phase transition is the transverse field Ising ferromagnet. In contrast to classical critical systems, whose properties depend only on symmetry and the dimension of space, the nature of a quantum phase transition also depends on the dynamics. In the transverse field Ising model, the order parameter is not conserved and increasing the transverse field enhances quantum fluctuations until they become strong enough to restore the symmetry of the ground state. Ising pseudo-spins can represent the order parameter of any system with a two-fold degenerate broken-symmetry phase, including electronic nematic order associated with spontaneous point-group symmetry breaking. Here, we show for the representative example of orbital-nematic ordering of a non-Kramers doublet that an orthogonal strain or a perpendicular magnetic field plays the role of the transverse field, thereby providing a practical route for tuning appropriate materials to a quantum critical point. While the transverse fields are conjugate to seemingly unrelated order parameters, their non-trivial commutation relations with the nematic order parameter, which can be represented by a Berry-phase term in an effective field theory, intrinsically intertwines the different order parameters.Comment: 18 pages, 8 figures, 2 table

    Exposure of benthic invertebrates to sediment vibration: From laboratory experiments to outdoor simulated pile-driving

    Get PDF
    Activities directly interacting with the seabed, such as pile-driving, can produce vibrations that have the potential to impact benthic invertebrates within their vicinity. This stimuli may interfere with crucial behaviors such as foraging and predator avoidance, and the sensitivity to vibration is largely unknown. Here, the responsiveness of benthic invertebrates to sediment vibration is discussed in relation to laboratory and semi-field trials with two marine species: the mussel (Mytilus edulis) and hermit crab (Pagurus bernhardus). Sensory threshold curves were produced for both species in controlled laboratory conditions, followed by small-scale pile-driving exposures in the field. The merits of behavioral indicators are discussed, in addition to using physiological measures, as a method of determining reception and measuring responses. The measurement and sensors required for sediment vibration quantification are also discussed. Response and threshold data were related to measurements taken in the vicinity of anthropogenic sources, allowing a link between responsiveness and actual operations. The impact of pile-driving on sediment-dwelling invertebrates has received relatively little research, yet the data here suggest that such activities are likely to impact key coastal species which play important roles within the marine environment

    Exoplanet Characterization by Proxy: a Transiting 2.15 R_Earth Planet Near the Habitable Zone of the Late K dwarf Kepler-61

    Full text link
    We present the validation and characterization of Kepler-61b: a 2.15 R_Earth planet orbiting near the inner edge of the habitable zone of a low-mass star. Our characterization of the host star Kepler-61 is based upon a comparison with the set of spectroscopically similar stars with directly-measured radii and temperatures. We apply a stellar prior drawn from the weighted mean of these properties, in tandem with the Kepler photometry, to infer a planetary radius for Kepler-61b of 2.15+/-0.13 R_Earth and an equilibrium temperature of 273+/-13 K (given its period of 59.87756+/-0.00020 days and assuming a planetary albedo of 0.3). The technique of leveraging the physical properties of nearby "proxy" stars allows for an independent check on stellar characterization via the traditional measurements with stellar spectra and evolutionary models. In this case, such a check had implications for the putative habitability of Kepler-61b: the planet is 10% warmer and larger than inferred from K-band spectral characterization. From the Kepler photometry, we estimate a stellar rotation period of 36 days, which implies a stellar age of >1 Gyr. We summarize the evidence for the planetary nature of the Kepler-61 transit signal, which we conclude is 30,000 times more likely to be due to a planet than a blend scenario. Finally, we discuss possible compositions for Kepler-61b with a comparison to theoretical models as well as to known exoplanets with similar radii and dynamically measured masses.Comment: 23 pages, 12 figures. Accepted for publication in Ap
    corecore