59 research outputs found

    Neutralizing Antibody Response to Hepatitis C Virus

    Get PDF
    A critical first step in a “rational vaccine design” approach for hepatitis C virus (HCV) is to identify the most relevant mechanisms of immune protection. Emerging evidence provides support for a protective role of virus neutralizing antibodies, and the ability of the B cell response to modify the course of acute HCV infection. This has been made possible by the development of in vitro cell culture models, based on HCV retroviral pseudotype particles expressing E1E2 and infectious cell culture-derived HCV virions, and small animal models that are robust tools in studies of antibody-mediated virus neutralization. This review is focused on the immunogenic determinants on the E2 glycoprotein mediating virus neutralization and the pathways in which the virus is able to escape from immune containment. Encouraging findings from recent studies provide support for the existence of broadly neutralization antibodies that are not associated with virus escape. The identification of conserved epitopes mediating virus neutralization that are not associated with virus escape will facilitate the design of a vaccine immunogen capable of eliciting broadly neutralizing antibodies against this highly diverse virus

    The Hepatitis C Virus E1 Glycoprotein Undergoes Productive Folding but Accelerated Degradation When Expressed as an Individual Subunit in CHO Cells

    Get PDF
    Hepatitis C Virus E1E2 heterodimers are components of the viral spike. Although there is a general agreement on the necessity of the co-expression of both E1 and E2 on a single coding unit for their productive folding and assembly, in a previous study using an in vitro system we obtained strong indications that E1 can achieve folding in absence of E2. Here, we have studied the folding pathway of unescorted E1 from stably expressing CHO cells, compared to the folding observed in presence of the E2 protein. A DTT-resistant conformation is achieved by E1 in both situations, consistent with the presence of an E2-independent oxidative pathway. However, while the E1E2 heterodimer is stable inside cells, E1 expressed alone is degraded within a few hours. On the other hand, the oxidation and stability of individually expressed E2 subunits is dependent on E1 co-expression. These data are consistent with E1 and E2 assisting each other for correct folding via different mechanisms: E2 assists E1 by stabilizing a semi-native conformation meanwhile E1 drives E2 towards a productive folding pathway

    Hepatitis C Virus E2 Protein Ectodomain Is Essential for Assembly of Infectious Virions

    Get PDF
    The Hepatitis C virus E1 and E2 envelope proteins are the major players in all events required for virus entry into target cells. In addition, the recently developed HCV cell culture system has indicated that E1E2 heterodimer formation is a prerequisite for viral particle production. In this paper, we explored a new genetic approach to construct intergenotypic 2a/1b chimeras, maintaining the structural region of the infectious strain JFH1 and substituting the soluble portion of E1 and/or E2 proteins. This strategy provides useful information on the role of the surface-exposed domain of the envelope proteins in virus morphogenesis and allows comparative analysis of different HCV genotypes. We found that substituting the E2 protein ectodomain region abolishes the production of chimeric infectious particles. Our data indicate that the soluble part of the E2 protein is involved in a genotype-specific interplay with remaining viral proteins that affect the HCV assembly process

    Mutations in hepatitis C virus E2 located outside the CD81 binding sites lead to escape from broadly neutralizing antibodies but compromise virus infectivity.

    Get PDF
    Broadly neutralizing antibodies are commonly present in the sera of patients with chronic hepatitis C virus (HCV) infection. To elucidate possible mechanisms of virus escape from these antibodies, retrovirus particles pseudotyped with HCV glycoproteins (HCVpp) isolated from sequential samples collected over a 26-year period from a chronically infected patient, H, were used to characterize the neutralization potential and binding affinity of a panel of anti-HCV E2 human monoclonal antibodies (HMAbs). Moreover, AP33, a neutralizing murine monoclonal antibody (MAb) to a linear epitope in E2, was also tested against selected variants. The HMAbs used were previously shown to broadly neutralize HCV and to recognize a cluster of highly immunogenic overlapping epitopes, designated domain B, containing residues that are also critical for binding of viral E2 glycoprotein to CD81, a receptor essential for virus entry. Escape variants were observed at different time points with some of the HMAbs. Other HMAbs neutralized all variants except for the isolate 02.E10, obtained in 2002, which was also resistant to MAb AP33. The 02.E10 HCVpp that have reduced binding affinities for all antibodies and for CD81 also showed reduced infectivity. Comparison of the 02.E10 nucleotide sequence with that of the strain H-derived consensus variant, H77c, revealed the former to have two mutations in E2, S501N and V506A, located outside the known CD81 binding sites. Substitution A506V in 02.E10 HCVpp restored binding to CD81, but its antibody neutralization sensitivity was only partially restored. Double substitutions comprising N501S and A506V synergistically restored 02.E10 HCVpp infectivity. Other mutations that are not part of the antibody binding epitope in the context of N501S and A506V were able to completely restore neutralization sensitivity. These findings showed that some nonlinear overlapping epitopes are more essential than others for viral fitness and consequently are more invariant during earlier years of chronic infection. Further, the ability of the 02.E10 consensus variant to escape neutralization by the tested antibodies could be a new mechanism of virus escape from immune containment. Mutations that are outside receptor binding sites resulted in structural changes leading to complete escape from domain B neutralizing antibodies, while simultaneously compromising viral fitness by reducing binding to CD81

    Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412-423

    Get PDF
    A challenge for hepatitis C virus (HCV) vaccine development is to define epitopes that are able to elicit protective antibodies against this highly diverse virus. The E2 glycoprotein region located at residues 412-423 is conserved and antibodies to 412-423 have broadly neutralizing activities. However, an adaptive mutation, N417S, is associated with a glycan shift in a variant that cannot be neutralized by a murine but by human monoclonal antibodies (HMAbs) against 412-423. To determine whether HCV escapes from these antibodies, we analyzed variants that emerged when cell culture infectious HCV virions (HCVcc) were passaged under increasing concentrations of a specific HMAb, HC33.1. Multiple nonrandom escape pathways were identified. Two pathways occurred in the context of an N-glycan shift mutation at N417T. At low antibody concentrations, substitutions of two residues outside of the epitope, N434D and K610R, led to variants having improved in vitro viral fitness and reduced sensitivity to HC33.1 binding and neutralization. At moderate concentrations, a S419N mutation occurred within 412-423 in escape variants that have greatly reduced sensitivity to HC33.1 but compromised viral fitness. Importantly, the variants generated from these pathways differed in their stability. N434D and K610R-associated variants were stable and became dominant as the virions were passaged. The S419N mutation reverted back to N419S when immune pressure was reduced by removing HC33.1. At high antibody concentrations, a mutation at L413I was observed in variants that were resistant to HC33.1 neutralization. Collectively, the combination of multiple escape pathways enabled the virus to persist under a wide range of antibody concentrations. Moreover, these findings pose a different challenge to vaccine development beyond the identification of highly conserved epitopes. It will be necessary for a vaccine to induce high potency antibodies that prevent the formation of escape variants, which can co-exist with lower potency or levels of neutralizing activities

    Comprehensive linker-scanning mutagenesis of the hepatitis C virus E1 and E2 envelope glycoproteins reveals new structure–function relationships

    Get PDF
    Despite extensive research, many details about the structure and functions of hepatitis C virus (HCV) glycoproteins E1 and E2 are not fully understood, and their crystal structure remains to be determined. We applied linker-scanning mutagenesis to generate a panel of 34 mutants, each containing an insertion of 5 aa at a random position within the E1E2 sequence. The mutated glycoproteins were analysed by using a range of assays to identify regions critical for maintaining protein conformation, E1E2 complex assembly, CD81 receptor binding, membrane fusion and infectivity. The results, while supporting previously published data, provide several interesting new findings. Firstly, insertion at amino acid 587 or 596 reduced E1E2 heterodimerization without affecting reactivity with some conformation-sensitive mAbs or with CD81, thus implicating these residues in glycoprotein assembly. Secondly, insertions within a conserved region of E2, between amino acid residues 611 and 631, severely disrupted protein conformation and abrogated binding of all conformation-sensitive antibodies, suggesting that the structural integrity of this region is critical for the correct folding of E2. Thirdly, an insertion at Leu-682 specifically affected membrane fusion, providing direct evidence that the membrane-proximal ‘stem’ of E2 is involved in the fusion mechanism. Overall, our results show that the HCV glycoproteins generally do not tolerate insertions and that there are a very limited number of sites that can be changed without dramatic loss of function. Nevertheless, we identified two E2 insertion mutants, at amino acid residues 408 and 577, that were infectious in the murine leukemia virus-based HCV pseudoparticle system

    Hepatitis C virus vaccine candidates inducing protective neutralizing antibodies

    Get PDF
    With more than 150 million chronically infected people, hepatitis C virus (HCV) remains a substantial global health burden. Direct-acting antivirals have dramatically improved viral cure. However, limited access to therapy, late stage detection of infection and re-infection following cure illustrate the need for a vaccine for global control of infection. Vaccines with induction of neutralizing antibodies (nAbs) have been shown to protect successfully against infections by multiple viruses and are currently developed for HCV. Areas covered: Here we review the progress towards the development of vaccines aiming to confer protection against chronic HCV infection by inducing broadly nAbs. The understanding or viral immune evasion in infected patients, the development of novel model systems and the recent structural characterization of viral envelope glycoprotein E2 has markedly advanced our understanding of the molecular mechanisms of virus neutralization with the concomitant development of several vaccine candidates. Expert commentary: While HCV vaccine development remains challenged by the high viral diversity and immune evasion, marked progress in HCV research has advanced vaccine design. Several vaccine candidates have shown robust induction of nAbs in animal models and humans. Randomized clinical trials are the next step to assess their clinical efficacy for protection against chronic infection

    Antigenicity and immunogenicity of differentially glycosylated HCV E2 envelope proteins expressed in mammalian and insect cells

    Get PDF
    Development of a prophylactic vaccine for hepatitis C virus (HCV) remains a global health challenge. Cumulative evidence supports the importance of antibodies targeting the HCV E2 envelope glycoprotein to facilitate viral clearance. However, a significant challenge for a B cell-based vaccine is focusing the immune response on conserved E2 epitopes capable of eliciting neutralizing antibodies not associated with viral escape. We hypothesized that glycosylation might influence the antigenicity and immunogenicity of E2. Accordingly, we performed head-to-head molecular, antigenic and immunogenic comparisons of soluble E2 (sE2) produced in (i) mammalian (HEK293) cells, which confer mostly complex and high mannose type glycans; and (ii) insect (Sf9) cells, which impart mainly paucimannose type glycans. Mass spectrometry demonstrated that all 11 predicted N-glycosylation sites were utilized in both HEK293- and Sf9-derived sE2, but that N-glycans in insect sE2 were on average smaller and less complex. Both proteins bound CD81 and were recognized by conformation-dependent antibodies. Mouse immunogenicity studies revealed that similar polyclonal antibody responses were generated against antigenic domains A–E of E2. Although neutralizing antibody titers showed that Sf9-derived sE2 induced moderately stronger responses than HEK293-derived sE2 against the homologous HCV H77c isolate, the two proteins elicited comparable neutralization titers against heterologous isolates. Given that global alteration of HCV E2 glycosylation by expression in different hosts did not appreciably affect antigenicity or overall immunogenicity, a more productive approach to increasing the antibody response to neutralizing epitopes may be complete deletion, rather than just modification, of specific N-glycans proximal to these epitopes

    Broadly neutralizing human monoclonal antibodies to the hepatitis C virus E2 glycoprotein

    Get PDF
    The humoral response to hepatitis C virus (HCV) may contribute to controlling infection. We previously isolated human monoclonal antibodies to conformational epitopes on the HCV E2 glycoprotein. Here, we report on their ability to inhibit infection by retroviral pseudoparticles incorporating a panel of full-length E1E2 clones representing the full spectrum of genotypes 1–6. We identified one antibody, CBH-5, that was capable of neutralizing every genotype tested. It also potently inhibited chimeric cell culture-infectious HCV, which had genotype 2b envelope proteins in a genotype 2a (JFH-1) background. Analysis using a panel of alanine-substitution mutants of HCV E2 revealed that the epitope of CBH-5 includes amino acid residues that are required for binding of E2 to CD81, a cellular receptor essential for virus entry. This suggests that CBH-5 inhibits HCV infection by competing directly with CD81 for a binding site on E2
    corecore