1,990 research outputs found

    Hierarchical Coupling of Molecular Dynamics and Micromechanics to Predict the Elastic Properties of Three-Phase and Four-Phase Silicon Carbide Composites

    Get PDF
    The results obtained from previously conducted molecular dynamics analysis of silicon carbide (-SiC (6H, 4H, & 2H-SiC), -SiC (3C SiC)), silicon and boron nitride, were utilized as inputs in the MAC/GMC micromechanics software to model and evaluate the elastic properties of three-phase SiC/BN/SiC and four-phase SiC/BN/Si/SiC composites. This method of analysis eliminates the need for back-calculation of the apparent properties of the base constituents from the measured ceramic matrix composites properties. The multiscale models are validated against the available data in literature

    On the subduction of upwelled waters in the California Current

    Get PDF
    We use 20 years of hydrographic data from the California Cooperative Oceanic Fisheries Investigations (CalCOFI) program off southern California to search for water mass signatures of subducted upwelled waters. A search for secondary oxygen maxima in more than 6000 water column profiles identified 629 cases of deep oxygen inversions. The additional criteria of a minimum magnitude of the deep oxygen inversion and an accompanying reduction in dissolved nutrients identified 106 (∼17%) of these as subduction signatures. The physical and chemical characteristics of these water masses suggest that they had been photosynthetically modified in the euphotic zone, and perhaps ventilated at the surface, before being subducted and eventually advected downstream within the California Current. Surface waters with similar physical characteristics as the subduction signatures (∼8.5°C, S∼34.0 psu, σ∼26.4 kg m−3) were observed during the spring-summer upwelling period at a shore station upstream from the CalCOFI grid. Even with conservative search criteria and coarse spatial-temporal sampling, subduction signatures were observed in all seasons and in each year of the record. These results imply that the processes leading to the subduction, cross-shore transport, and downstream advection of upwelled water masses are common and persistent in the California Current. This has important implications for the transport of coastal waters, and resident planktonic organisms and organic carbon, out of the coastal euphotic zone, and provides a mechanism for frequent ventilation of the upper thermocline of the California Current

    Critique of Macro Flow/Damage Surface Representations for Metal Matrix Composites Using Micromechanics

    Get PDF
    Guidance for the formulation of robust, multiaxial, constitutive models for advanced materials is provided by addressing theoretical and experimental issues using micromechanics. The multiaxial response of metal matrix composites, depicted in terms of macro flow/damage surfaces, is predicted at room and elevated temperatures using an analytical micromechanical model that includes viscoplastic matrix response as well as fiber-matrix debonding. Macro flow/damage surfaces (i.e., debonding envelopes, matrix threshold surfaces, macro 'yield' surfaces, surfaces of constant inelastic strain rate, and surfaces of constant dissipation rate) are determined for silicon carbide/titanium in three stress spaces. Residual stresses are shown to offset the centers of the flow/damage surfaces from the origin and their shape is significantly altered by debonding. The results indicate which type of flow/damage surfaces should be characterized and what loadings applied to provide the most meaningful experimental data for guiding theoretical model development and verification

    Coupled Thermo-Mechanical Micromechanics Modeling of the Influence of Thermally Grown Oxide Layer in an Environmental Barrier Coating System

    Get PDF
    Environmental Barrier Coatings (EBCs) have emerged as a promising means of protecting silicon based ceramic matrix composite (CMC) components for high temperature applications (e.g., aircraft engines). EBCs are often used to protect an underlying material (substrate) such as silicon carbide from extreme thermal/chemical environments. In a typical CMC/EBC system, an EBC may or may not be adhered to an underlying substrate with a bond coat (e.g., silicon). Irrespective, systems that utilize EBCs are susceptible to a number of failure modes including oxidation/delamination, recession, chemical attack and dissolution, thermomechanical degradation, erosion, and foreign object damage. Current work at NASA Glenn Research Center is aimed at addressing these failure modes in EBC systems and developing robust analysis tools to aid in the design process. The Higher-Order Theory for Functionally Graded Materials (HOTFGM), a precursor to the High-Fidelity Generalized Method of Cells micromechanics approach, was developed to investigate the coupled thermo-mechanical behavior of functionally graded composites and will be used herein to assess the development and growth of a low-stiffness thermally grown oxide (TGO) layer in EBC/CMC systems without a silicon bond coat. To accomplish this a sensitivity study is conducted to examine the influence of uniformly and nonuniformly grown oxide layer on the associated driving forces leading to mechanical failure (spallation) of EBC layer when subjected to isothermal loading

    Effects of Subscale Size and Shape on Global Energy Dissipation in a Multiscale Model of a Fiber-Reinforced Composite Exhibiting Post-Peak Strain Softening Using Abaqus and FEAMAC

    Get PDF
    A mesh objective crack band model is implemented in the generalized method of cells (GMC) micromechanics model to predict failure of a composite repeating unit cell (RUC). The micromechanics calculations are achieved using the MAC/GMC core engine within the ImMAC suite of micromechanics codes, developed at the NASA Glenn Research Center. The microscale RUC is linked to a macroscale Abaqus/Standard finite element model using the FEAMAC multiscale framework (included in the ImMAC suite). The effects of the relationship between the characteristic length of the finite element and the size of the microscale RUC on the total energy dissipation of the multiscale model are investigated. A simple 2-D composite square subjected to uniaxial tension is used to demonstrate the effects of scaling the dimensions of the RUC such that the length of the sides of the RUC are equal to the characteristic length of the finite element. These results are compared to simulations where the size of the RUC is fixed, independent of the element size. Simulations are carried out for a variety of mesh densities and element shapes, including square and triangular. Results indicate that a consistent size and shape must be used to yield preserve energy dissipation across the scales

    Flow/Damage Surfaces for Fiber-Reinforced Metals Having Different Periodic Microstructures

    Get PDF
    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics, using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue; for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements

    Flow/Damage Surfaces for Fiber-Reinforced Metals having Different Periodic Microstructures

    Get PDF
    Flow/damage surfaces can be defined in terms of stress, inelastic strain rate, and internal variables using a thermodynamics framework. A macroscale definition relevant to thermodynamics and usable in an experimental program is employed to map out surfaces of constant inelastic power in various stress planes. The inelastic flow of a model silicon carbide/ titanium composite system having rectangular, hexagonal, and square diagonal fiber packing, arrays subjected to biaxial stresses is quantified by flow/damage surfaces that are determined numerically from micromechanics. using both finite element analysis and the generalized method of cells. Residual stresses from processing are explicitly included and damage in the form of fiber-matrix debonding under transverse tensile and/or shear loading is represented by a simple interface model. The influence of microstructural architecture is largest whenever fiber-matrix debonding is not an issue, for example in the presence of transverse compressive stresses. Additionally, as the fiber volume fraction increases, so does the effect of microstructural architecture. With regard to the micromechanics analysis, the overall inelastic flow predicted by the generalized method of cells is in excellent agreement with that predicted using a large number of displacement-based finite elements
    • …
    corecore