352 research outputs found

    Cementation scenarios for New Zealand Cenozoic nontropical limestones

    Get PDF
    Cenozoic limestones are widely distributed in New Zealand, especially in the Oligocene-earliest Miocene in both islands, and the Pliocene-Pleistocene in North Island. A spectrum of limestone types exists, but all are skeletal-dominated (>70%), with usually <20% interparticle cement-matrix and <10% siliciclasts, and they have facies attributes typical of nontropical carbonates. The range of diagenetic features identified within the limestones is the basis for assigning them to a small number of “end-member” cementation classes that are inferred to be associated with four, broad, diagenetic settings

    Lithostratigraphy and depositional episodes of the Oligocene carbonate-rich Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The subsurface Oligocene Tikorangi Formation is a unique and important oil producer in the onshore Waihapa-Ngaere Field, Taranaki Basin, being the only carbonate and fracture-producing reservoir within the basin. Core sample data from seven onshore wells (foredeep megafacies) and a single offshore well (basinal megafacies) are correlated with a suite of sonic and gamma-ray geophysical well log data to derive interpretative carbonate facies for the Tikorangi Formation. Four mixed siliciclastic-carbonate to carbonate facies have been defined: facies A-calcareous siliciclastite (75% carbonate). Single or interbedded combinations of these facies form the basis for identifying nine major lithostratigraphic units in the Tikorangi Formation that are correlatable between the eight wells in this study.The Tikorangi Formation accumulated across a shelf-slope-basin margin within a tectonically diversified basin setting, notably involving considerable off-shelf redeposition of sediment into a bounding foredeep. Analysis of gamma, sonic, and resistivity well logs identifies five major episodes of sedimentary evolution. Episode I comprises retrogradational siliciclastic-dominated redeposited units associated with foredeep subsidence. Episode II is a continuation of episode I retrogradation, but with increased mass-redeposited carbonate influx during accelerated foredeep subsidence and relative sea-level rise, the top marking the maximum flooding surface. Episode III involves a progradational sequence comprising relatively pure redeposited carbonate units associated with declining subsidence rates and minimal siliciclastic input, with movement of facies belts basinward. Episode IV consists of prograding aggradation involving essentially static facies belts dominated by often thick, periodically mass-emplaced, carbonate-rich units separated by thin background siliciclastic shale-like units. Episode V is a retrogradational sequence marking the reintroduction of siliciclastic material into the basin following uplift of Mesozoic basement associated with accelerated compressional tectonics along the Australia-Pacific plate boundary, initially diluting and ultimately extinguishing carbonate production factories and terminating deposition of the Tikorangi Formation

    Petrogenesis of the Tikorangi Formation fracture reservoir, Waihapa-Ngaere Field, Taranaki Basin

    Get PDF
    The subsurface mid-Tertiary Tikorangi Formation is the sole limestone and the only fracture-producing hydrocarbon reservoir within Taranaki Basin. This study, based on core material from seven wells in the onshore Waihapa/Ngaere Field, uses a range of petrographic (standard, CL, UV, SEM) and geochemical techniques (stable isotope, trace element data, XRD) to unravel a complex diagenetic history for the Tikorangi Formation. A series of eight major geological-diagenetic events for the host rock and fracture systems have been established, ranging from burial cementation through to hydrocarbon emplacement within mineralized fractures. For each diagenetic event a probable temperature field has been identified which, combined with a geohistory plot, has enabled the timing of events to be determined. This study has shown that the Tikorangi Formation comprises a complex mixed siliciclastic-carbonate-rich sequence of rocks that exhibit generally tight, pressure-dissolved, and well cemented fabrics with negligible porosity and permeability other than in fractures. Burial cementation of the host rocks occurred at temperatures of 27-37°C from about 0.5-1.0 km burial depths. Partial replacement dolomitisation occurred during late burial diagenesis at temperatures of 36-50°C and at burial depths of about 1.0 km, without any secondary porosity development. Fracturing occurred after dolomitisation and was associated with compression and thrusting on the Taranaki Fault. The location of more carbonate/dolomite-rich units may have implications for the location of better-developed fracture network systems and for hydrocarbon prospectivity and production. Hydrocarbon productivity has been ultimately determined by original depositional facies, diagenesis, and deformation. Within the fracture systems, a complex suite of vein calcite, dolomite, quartzine, and celestite minerals has been precipitated prior to hydrocarbon emplacement, which have substantially healed and reduced fracture porosities and permeabilities. The occurrence of multiple vein mineral phases, collectively forming a calcite/dolomite-celestite-quartzine mineral assemblage, points to fluid compositions varying both spatially and temporally. The fluids responsible for vein mineralisation in the Tikorangi Formation probably involved waters of diverse origins and compositions. Vein mineralisation records a history of changing pore fluid chemistry and heating during burial, punctuated by changes in the relative input and mixing of downward circulating meteoric and upwelling basinal fluids. A sequence of mineralisation events and their probable burial depth/temperature fields have been defined, ranging from temperatures of 50-80°C and burial depths of 1.0-2.3 km. Hydrocarbon emplacement has occurred over the last 6 m.y. following the vein mineralization events. The Tikorangi Formation must continue to be viewed as a potential fracture reservoir play within Taranaki Basin

    Lithostratigraphy and depositional episodes of the Oligocene carbonate-rich Tikorangi Formation, Taranaki Basin, New Zealand

    Get PDF
    The subsurface Oligocene Tikorangi Formation is a unique and important oil producer in the onshore Waihapa-Ngaere Field, Taranaki Basin, being the only carbonate and fracture-producing reservoir within the basin. Core sample data from seven onshore wells (foredeep megafacies) and a single offshore well (basinal megafacies) are correlated with a suite of sonic and gamma-ray geophysical well log data to derive interpretative carbonate facies for the Tikorangi Formation. Four mixed siliciclastic-carbonate to carbonate facies have been defined: facies A-calcareous siliciclastite (75% carbonate). Single or interbedded combinations of these facies form the basis for identifying nine major lithostratigraphic units in the Tikorangi Formation that are correlatable between the eight wells in this study.The Tikorangi Formation accumulated across a shelf-slope-basin margin within a tectonically diversified basin setting, notably involving considerable off-shelf redeposition of sediment into a bounding foredeep. Analysis of gamma, sonic, and resistivity well logs identifies five major episodes of sedimentary evolution. Episode I comprises retrogradational siliciclastic-dominated redeposited units associated with foredeep subsidence. Episode II is a continuation of episode I retrogradation, but with increased mass-redeposited carbonate influx during accelerated foredeep subsidence and relative sea-level rise, the top marking the maximum flooding surface. Episode III involves a progradational sequence comprising relatively pure redeposited carbonate units associated with declining subsidence rates and minimal siliciclastic input, with movement of facies belts basinward. Episode IV consists of prograding aggradation involving essentially static facies belts dominated by often thick, periodically mass-emplaced, carbonate-rich units separated by thin background siliciclastic shale-like units. Episode V is a retrogradational sequence marking the reintroduction of siliciclastic material into the basin following uplift of Mesozoic basement associated with accelerated compressional tectonics along the Australia-Pacific plate boundary, initially diluting and ultimately extinguishing carbonate production factories and terminating deposition of the Tikorangi Formation

    Petrologic evidence for earliest Miocene tectonic mobility on eastern Taranaki Basin margin

    Get PDF
    At Gibsons Beach on the west coast of central North Island, the earliest Miocene (Waitakian) Otorohanga Limestone, the top-most formation in the Te Kuiti Group, is unconformably overlain on an undulating, locally channelised erosion surface by the Early Miocene (Otaian) Papakura Limestone at the base of the Waitemata Group. The basal facies of the Papakura Limestone is a conglomerate composed exclusively of tightly packed pebble- to cobble-sized clasts of skeletal limestone sourced from the underlying Otorohanga Limestone. This petrographic and geochemical study demonstrates that the Otorohanga Limestone was partially lithified during marine and shallow-burial cementation at subsurface depths down to a few tens of metres prior to uplift, erosion and cannibalisation of the limestone clasts into the Papakura Limestone. Strontium isotope dating of fossils from both the Otorohanga and Papakura Limestones at Gibsons Beach yield comparable ages of about 22 Ma, close to the Waitakian/Otaian boundary, indicating very rapid tectonic inversion and erosion of the section occurred in the earliest Miocene. We envisage the clasts of Otorohanga Limestone were sourced from a proximal shoreline position and redeposited westwards by episodic debris flows onto a shallow-shelf accumulating mixed siliciclastic-skeletal carbonate deposits of the Papakura Limestone. Subsequent burial of both limestones by rapidly accumulating Waitemata Group sandstone and flysch instigated precipitation of widespread burial cements from pressure dissolution of carbonate material at subsurface depths from about 100 m to 1.0 km. The vertical tectonic movements registered at Gibsons Beach can be related to the oblique compression associated with the development of the Australian-Pacific plate boundary through New Zealand at about this time and coincide with overthrusting of basement into Taranaki Basin between mid-Waitakian (earliest Miocene) and Altonian (late Early Miocene) times

    Interrelationships of academic readiness, social integration, and perceptions of residence hall experiences of returning Sophomores at a southern university

    Get PDF
    The purpose of this study was to examine the interrelationships of academic readiness, social integration, and perceptions of residence hall experiences of returning sophomores at a southern university. The literature has provided a basis for the impact of academic readiness on retention as well as the role of social integration on the overall freshman experience. This study added to the existing body of research by collecting information from freshmen through the Beginning Survey of Student Engagement (BSSE) prior to enrollment, the National Survey of Student Engagement (NSSE) during the spring semester of first year and a Residence Hall Perception survey administered during spring semester of the sophomore year. These data were analyzed to determine what differences existed from pre-enrollment social expectations and actual experiences according to academic readiness. Furthermore, it explored the perceptions of residence hall experiences based upon academic readiness. The findings from this study revealed statistically significant results for expectations of time spent in co-curricular activities as compared to actual time spent in co-curricular activities during the freshman year. The study also found other important information about the interactions the freshmen had with roommates and friends. There was also great insight into their involvement with campus organizations during the first year, as well as perceived advantages and disadvantages of living on campus as a freshman. Administrators will be able t o utilize this research by designing first year residential programs that enhance the overall experience for future freshmen

    Constraints on the evolution of Taranaki Fault from thermochronology and basin analysis: Implications for the Taranaki Fault play

    Get PDF
    Taranaki Fault is the major structure defining the eastern margin of Taranaki Basin and marks the juxtaposition of basement with the Late Cretaceous-Paleogene succession in the basin. Although the timing of the basement over-thrusting on Taranaki Fault and subsequent marine onlap on to the basement block are well constrained as having occurred during the Early Miocene, the age of formation of this major structure, its character, displacement history and associated regional vertical movement during the Late Cretaceous- Recent are otherwise poorly known. Here we have applied (i) apatite fission track thermochronology to Mesozoic basement encountered in exploration holes and in outcrop to constrain the amount and timing of Late Cretaceous-Eocene exhumation of the eastern side of the fault, (ii) basin analysis of the Oligocene and Miocene succession east of the fault to establish the late-Early Miocene - Early Pliocene subsidence history, and (iii), regional porosity-bulk density trends in Neogene mudstone to establish the late uplift and tilting of eastern Taranaki Basin margin, which may have been associated with the main period of charge of the underlying Taranaki Fault play. We make the following conclusions that may be useful in assessing the viability of the Taranaki Fault play. (1) Mid-Cretaceous Taniwha Formation, intersected in Te Ranga-1 was formerly extensive across the western half of the Kawhia Syncline between Port Waikato and Awakino. (2) Taranaki Fault first formed as a normalfault during the Late Cretaceous around 85±10 Ma, and formed the eastern boundary of the Taranaki Rift-Transform basin. (3) Manganui Fault, located onshore north of Awakino, formed as a steeply east dipping reverse fault and accommodated about four km of displacement during the mid-Cretaceous. (4) Uplift and erosion, involving inversion of Early Oligocene deposits, occurred along the Herangi High during the Late Oligocene. This may have been associated with initial reverse movement on Taranaki Fault. (5) During the Early Miocene (Otaian Stage) the Taranaki and Manganui Faults accommodated the westward transport of Murihiku basement into the eastern margin of Taranaki Basin, but the amount of topography generated over the Herangi High can only have been a few hundred metres in elevation. (6) The Altonian (19-16 Ma) marked the start of the collapse of the eastern margin of Taranaki Basin that lead during the Middle Miocene to the eastward retrogradation of the continental margin wedge into the King Country region. During the Late Miocene, from about 11 Ma, a thick shelf-slope continental margin wedge prograded northward into the King Country region and infilled it (Mt Messenger, Urenui, Kiore and Matemateaonga Formations). (7) During the Pliocene and Pleistocene the whole of central New Zealand, including the eastern margin of Taranaki Basin, became involved in long wavelength up-doming with 1-2 km erosion of much of the Neogene succession in the King Country region. This regionally elevated the Taranaki Fault play into which hydrocarbons may have migrated from the Northern Graben region
    corecore