99 research outputs found
Efficient CRISPR-rAAV engineering of endogenous genes to study protein function by allele-specific RNAi.
Gene knockout strategies, RNAi and rescue experiments are all employed to study mammalian gene function. However, the disadvantages of these approaches include: loss of function adaptation, reduced viability and gene overexpression that rarely matches endogenous levels. Here, we developed an endogenous gene knockdown/rescue strategy that combines RNAi selectivity with a highly efficient CRISPR directed recombinant Adeno-Associated Virus (rAAV) mediated gene targeting approach to introduce allele-specific mutations plus an allele-selective siRNA Sensitive (siSN) site that allows for studying gene mutations while maintaining endogenous expression and regulation of the gene of interest. CRISPR/Cas9 plus rAAV targeted gene-replacement and introduction of allele-specific RNAi sensitivity mutations in the CDK2 and CDK1 genes resulted in a >85% site-specific recombination of Neo-resistant clones versus ∼8% for rAAV alone. RNAi knockdown of wild type (WT) Cdk2 with siWT in heterozygotic knockin cells resulted in the mutant Cdk2 phenotype cell cycle arrest, whereas allele specific knockdown of mutant CDK2 with siSN resulted in a wild type phenotype. Together, these observations demonstrate the ability of CRISPR plus rAAV to efficiently recombine a genomic locus and tag it with a selective siRNA sequence that allows for allele-selective phenotypic assays of the gene of interest while it remains expressed and regulated under endogenous control mechanisms
Pathologic Prion Protein Infects Cells by Lipid-Raft Dependent Macropinocytosis
Transmissible spongiform encephalopathies, including variant-Creutzfeldt-Jakob disease (vCJD) in humans and bovine spongiform encephalopathies in cattle, are fatal neurodegenerative disorders characterized by protein misfolding of the host cellular prion protein (PrPC) to the infectious scrapie form (PrPSc). However, the mechanism that exogenous PrPSc infects cells and where pathologic conversion of PrPC to the PrPSc form occurs remains uncertain. Here we report that similar to the mechanism of HIV-1 TAT-mediated peptide transduction, processed mature, full length PrP contains a conserved N-terminal cationic domain that stimulates cellular uptake by lipid raft-dependent, macropinocytosis. Inhibition of macropinocytosis by three independent means prevented cellular uptake of recombinant PrP; however, it did not affect recombinant PrP cell surface association. In addition, fusion of the cationic N-terminal PrP domain to a Cre recombinase reporter protein was sufficient to promote both cellular uptake and escape from the macropinosomes into the cytoplasm. Inhibition of macropinocytosis was sufficient to prevent conversion of PrPC to the pathologic PrPSc form in N2a cells exposed to strain RML PrPSc infected brain homogenates, suggesting that a critical determinant of PrPC conversion occurs following macropinocytotic internalization and not through mere membrane association. Taken together, these observations provide a cellular mechanism that exogenous pathological PrPSc infects cells by lipid raft dependent, macropinocytosis
Recommended from our members
Site Selective Antibody-Oligonucleotide Conjugation via Microbial Transglutaminase.
Nucleic Acid Therapeutics (NATs), including siRNAs and AntiSense Oligonucleotides (ASOs), have great potential to drug the undruggable genome. Targeting siRNAs and ASOs to specific cell types of interest has driven dramatic improvement in efficacy and reduction in toxicity. Indeed, conjugation of tris-GalNAc to siRNAs and ASOs has shown clinical efficacy in targeting diseases driven by liver hepatocytes. However, targeting non-hepatic diseases with oligonucleotide therapeutics has remained problematic for several reasons, including targeting specific cell types and endosomal escape. Monoclonal antibody (mAb) targeting of siRNAs and ASOs has the potential to deliver these drugs to a variety of specific cell and tissue types. However, most conjugation strategies rely on random chemical conjugation through lysine or cysteine residues resulting in conjugate heterogeneity and a distribution of Drug:Antibody Ratios (DAR). To produce homogeneous DAR-2 conjugates with two siRNAs per mAb, we developed a novel two-step conjugation procedure involving microbial transglutaminase (MTGase) tagging of the antibody C-terminus with an azide-functionalized linker peptide that can be subsequently conjugated to dibenzylcyclooctyne (DBCO) bearing oligonucleotides through azide-alkyne cycloaddition. Antibody-siRNA (and ASO) conjugates (ARCs) produced using this strategy are soluble, chemically defined targeted oligonucleotide therapeutics that have the potential to greatly increase the number of targetable cell types
Recommended from our members
Cyclin D activates the Rb tumor suppressor by mono-phosphorylation
The widely accepted model of G1 cell cycle progression proposes that cyclin D:Cdk4/6 inactivates the Rb tumor suppressor during early G1 phase by progressive multi-phosphorylation, termed hypo-phosphorylation, to release E2F transcription factors. However, this model remains unproven biochemically and the biologically active form(s) of Rb remains unknown. In this study, we find that Rb is exclusively mono-phosphorylated in early G1 phase by cyclin D:Cdk4/6. Mono-phosphorylated Rb is composed of 14 independent isoforms that are all targeted by the E1a oncoprotein, but show preferential E2F binding patterns. At the late G1 Restriction Point, cyclin E:Cdk2 inactivates Rb by quantum hyper-phosphorylation. Cells undergoing a DNA damage response activate cyclin D:Cdk4/6 to generate mono-phosphorylated Rb that regulates global transcription, whereas cells undergoing differentiation utilize un-phosphorylated Rb. These observations fundamentally change our understanding of G1 cell cycle progression and show that mono-phosphorylated Rb, generated by cyclin D:Cdk4/6, is the only Rb isoform in early G1 phase. DOI: http://dx.doi.org/10.7554/eLife.02872.00
Treatment of Terminal Peritoneal Carcinomatosis by a Transducible p53-Activating Peptide
Advanced-stage peritoneal carcinomatosis is resistant to current chemotherapy treatment and, in the case of metastatic ovarian cancer, results in a devastating 15%–20% survival rate. Therapeutics that restore genes inactivated during oncogenesis are predicted to be more potent and specific than current therapies. Experiments with viral vectors have demonstrated the theoretical utility of expressing the p53 tumor suppressor gene in cancer cells. However, clinically useful alternative approaches for introducing p53 activity into cancer cells are clearly needed. It has been hypothesized that direct reactivation of endogenous p53 protein in cancer cells will be therapeutically beneficial, but few tests of this hypothesis have been carried out in vivo. We report that a transducible D-isomer RI-TATp53C′ peptide activates the p53 protein in cancer cells, but not normal cells. RI-TATp53C′ peptide treatment of preclinical terminal peritoneal carcinomatosis and peritoneal lymphoma models results in significant increases in lifespan (greater than 6-fold) and the generation of disease-free animals. These proof-of-concept observations show that specific activation of endogenous p53 activity by a macromolecular agent is therapeutically effective in preclinical models of terminal human malignancy. Our results suggest that TAT-mediated transduction may be a useful strategy for the therapeutic delivery of large tumor suppressor molecules to malignant cells in vivo
Communications Biophysics
Contains reports on nine research projects split into four sections.National Institutes of Health (Grant 5 PO1 NS13126)National Institutes of Health (Grant 5 KO4 NS00113)National Institutes of Health (Training Grant 5 T32 NS07047)National Institutes of Health (Training Grant 1 T32 NS07099)National Science Foundation (Grant BNS77-16861)National Institutes of Health (Grant 5 ROI NS10916)National Institutes of Health (Grant 5 RO1 NS12846)National Science Foundation (Grant BNS77-21751)National Institutes of Health (Grant 1 RO1 NS14092)Edith E. Sturgis FoundationHealth Sciences FundNational Institutes of Health (Grant 2 R01 NS11680)National Institutes of Health (Fellowship 5 F32 NS05327)National Institutes of Health (Grant 2 ROI NS11080)National Institutes of Health (Training Grant 5 T32 GM07301
- …