126 research outputs found

    Man's best friend: what can pet dogs teach us about non-Hodgkin's lymphoma?

    Get PDF
    Animal models are essential for understanding lymphoma biology and testing new treatments prior to human studies. Spontaneously arising lymphomas in pet dogs represent an underutilized resource that could be used to complement current mouse lymphoma models, which do not adequately represent all aspects of the human disease. Canine lymphoma resembles human lymphoma in many important ways, including characteristic translocations and molecular abnormalities and similar therapeutic responses to chemotherapy, radiation, and newer targeted therapies (e.g. ibrutinib). Given the large number of pet dogs and high incidence of lymphoma, particularly in susceptible breeds, dogs represent a largely untapped resource for advancing the understanding and treatment of human lymphoma. This review highlights similarities in molecular biology, diagnosis, treatment, and outcomes between human and canine lymphoma. It also describes resources that are currently available to study canine lymphoma, advantages to be gained by exploiting the genetic breed structure in dogs, and current and future challenges and opportunities to take full advantage of this resource for lymphoma studies

    Comprehensive genomic characterization of five canine lymphoid tumor cell lines

    Get PDF
    Abstract Background Leukemia/lymphoma cell lines have been critical in the investigation of the pathogenesis and therapy of hematological malignancies. While human LL cell lines have generally been found to recapitulate the primary tumors from which they were derived, appropriate characterization including cytogenetic and transcriptional assessment is crucial for assessing their clinical predictive value. Results In the following study, five canine LL cell lines, CLBL-1, Ema, TL-1 (Nody-1), UL-1, and 3132, were characterized using extensive immunophenotyping, karyotypic analysis, oligonucleotide array comparative genomic hybridization (oaCGH), and gene expression profiling. Genome-wide DNA copy number data from the cell lines were also directly compared with 299 primary canine round cell tumors to determine whether the cell lines represent primary tumors, and, if so, what subtype each most closely resembled. Conclusions Based on integrated analyses, CLBL-1 was classified as B-cell lymphoma, Ema and TL-1 as T-cell lymphoma, and UL-1 as T-cell acute lymphoblastic leukemia. 3132, originally classified as a B-cell lymphoma, was reclassified as a histiocytic sarcoma based on characteristic cytogenomic properties. In combination, these data begin to elucidate the clinical predictive value of these cell lines which will enhance the appropriate selection of in vitro models for future studies of canine hematological malignancies

    VH1-44 gene usage defines a subset of canine B-cell lymphomas associated with better patient survival

    Get PDF
    The use of specific immunoglobulin heavy chain variable region (VH) genes has been associated with increased patient survival in human B-cell lymphomas (hBCL). Given the similarity of human and canine BCL (cBCL) in morphology and clinical treatment, we examined the choice of VH in cBCL and determined whether VH gene selection was a distinct feature associated with survival time in dogs. VH gene selection and mutational status in 52 cBCL, including 29 diffuse large B-cell lymphomas (cDLBCL, the most common subtype of cBCL), were analyzed by comparison with the 80 published canine germline VH gene sequences. We further examined the prognostic impact of the subgroups defined by these features on canine survival. We found that VH1-44 was preferentially expressed in the majority of the 52 cBCLs (60%) as well as in the majority of the cDLBCL subset (59%). VH1-44 gene expression was associated with a statistically better overall survival (p=0.039) in cBCL patients, as well as in the cDLBCL subset of patients (p=0.038). These findings suggest that VH gene selection in cBCL is not random and may therefore have functional implications for cBCL lymphomagenesis, in addition to being a useful prognostic biomarker

    Report on the International Colloquium on Cardio-Oncology (Rome, 12–14 March 2014)

    Get PDF
    Cardio-oncology is a relatively new discipline that focuses on the cardiovascular sequelae of anti-tumour drugs. As any other young adolescent discipline, cardio-oncology struggles to define its scientific boundaries and to identify best standards of care for cancer patients or survivors at risk of cardiovascular events. The International Colloquium on Cardio-Oncology was held in Rome, Italy, 12–14 March 2014, with the aim of illuminating controversial issues and unmet needs in modern cardio-oncology. This colloquium embraced contributions from different kind of disciplines (oncology and cardiology but also paediatrics, geriatrics, genetics, and translational research); in fact, cardio-oncology goes way beyond the merging of cardiology with oncology. Moreover, the colloquium programme did not review cardiovascular toxicity from one drug or the other, rather it looked at patients as we see them in their fight against cancer and eventually returning to everyday life. This represents the melting pot in which anti-cancer therapies, genetic backgrounds, and risk factors conspire in producing cardiovascular sequelae, and this calls for screening programmes and well-designed platforms of collaboration between one key professional figure and another. The International Colloquium on Cardio-Oncology was promoted by the Menarini International Foundation and co-chaired by Giorgio Minotti (Rome), Joseph R Carver (Philadelphia, Pennsylvania, United States), and Steven E Lipshultz (Detroit, Michigan, United States). The programme was split into five sessions of broad investigational and clinical relevance (what is cardiotoxicity?, cardiotoxicity in children, adolescents, and young adults, cardiotoxicity in adults, cardiotoxicity in special populations, and the future of cardio-oncology). Here, the colloquium chairs and all the session chairs briefly summarised what was said at the colloquium. Topics and controversies were reported on behalf of all members of the working group of the International Colloquium on Cardio-Oncology

    Refining tumor-associated aneuploidy through ‘genomic recoding’ of recurrent DNA copy number aberrations in 150 canine non-Hodgkin lymphomas

    Get PDF
    Identification of the genomic regions most intimately associated with non-Hodgkin's lymphoma (NHL) pathogenesis is confounded by the genetic heterogeneity of human populations. We hypothesize that the restricted genetic variation of purebred dogs, combined with the contrasting architecture of the human and canine karyotypes, will increase the penetrance of fundamental NHL-associated chromosomal aberrations in both species. We surveyed non-random aneuploidy in 150 canine NHL cases, revealing limited genomic instability compared to their human counterparts and no evidence for CDKN2A/B deletion in canine B-cell NHL. ‘Genomic recoding’ of canine NHL data into a ‘virtual human’ chromosome format showed remarkably few regions of copy number aberration (CNA) shared between both species; restricted to regions of dog chromosomes 13 and 31, and human chromosomes 8 and 21. Our data suggest that gene discovery in NHL may be enhanced through comparative studies exploiting the less complex association between CNAs and tumor pathogenesis in canine patients

    FLT3 mutations in canine acute lymphocytic leukemia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>FMS-like tyrosine kinase 3 (FLT3) is a commonly mutated protein in a variety of human acute leukemias. Mutations leading to constitutively active FLT3, including internal tandem duplications of the juxtamembrane domain (ITD), result in continuous cellular proliferation, resistance to apoptotic cell death, and a poorer prognosis. A better understanding of the molecular consequences of FLT3 activation would allow improved therapeutic strategies in these patients. Canine lymphoproliferative diseases, including lymphoma and acute leukemias, share evolutionarily conserved chromosomal aberrations and exhibit conserved mutations within key oncogenes when compared to their human counterparts. A small percentage of canine acute lymphocytic leukemias (ALL) also exhibit <it>FLT3 </it>ITD mutations.</p> <p>Methods</p> <p>We molecularly characterized <it>FLT3 </it>mutations in two dogs and one cell line, by DNA sequencing, gene expression analysis via quantitative real-time PCR, and sensitivity to the FLT3 inhibitor lestaurtinib via <it>in vitro </it>proliferation assays. FLT 3 and downstream mediators of FLT3 activation were assessed by Western blotting.</p> <p>Results</p> <p>The canine B-cell leukemia cell line, GL-1, and neoplastic cells from 2/7 dogs diagnosed cytologically with ALL were found to have <it>FLT3 </it>ITD mutations and <it>FLT3 </it>mRNA up-regulation. Lestaurtinib, a small molecule FLT3 inhibitor, significantly inhibited the growth of GL-1 cells, while not affecting the growth of two other canine lymphoid cell lines without the <it>FLT3 </it>mutation. Finally, western blots were used to confirm the conserved downstream mediators of <it>FLT3 </it>activating mutations.</p> <p>Conclusions</p> <p>These results show that ALL and FLT3 biology is conserved between canine and human patients, supporting the notion that canine ALL, in conjunction with the GL-1 cell line, will be useful in the development of a relevant large animal model to aid in the study of human FLT3 mutant leukemias.</p

    Gene Profiling of Canine B-Cell Lymphoma Reveals Germinal Center and Postgerminal Center Subtypes with Different Survival Times, Modeling Human DLBCL

    Get PDF
    Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoma subtype, and fewer than half of patients are cured with standard front-line therapy. To improve therapeutic options, better animal models that accurately mimic human DLBCL (hDLBCL) are needed. Canine DLBCL (cDLBCL), one of the most common cancers in veterinary oncology, is morphologically similar to hDLBCL and is treated using similar chemotherapeutic protocols. With genomic technologies, it is now possible to molecularly evaluate dogs as a potential large-animal model for hDLBCL. We evaluated canine B-cell lymphomas (cBCLs) using immunohistochemistry and gene expression profiling. Canine B-cell lymphoma expression profiles were similar in many ways to hDLBCLs. For instance, a subset had increased expression of NF-κB pathway genes, mirroring human activated B-cell (ABC)-type DLBCL. Furthermore, immunoglobulin heavy chain (IGH) ongoing mutation status, which is correlated with ABC/germinal center B-cell (GCB) cell of origin in hDLBCL, separated cBCL into two groups with statistically different progression-free and overall survival times. In contrast with hDLBCL, cBCL rarely expressed BCL6 and MUM1/IRF4 by immunohistochemistry. Collectively, these studies identify molecular similarities to hDLBCL that introduce pet dogs as a representative model of hDLBCL for future studies, including therapeutic clinical trials

    Interconnected Microphysiological Systems for Quantitative Biology and Pharmacology Studies

    Get PDF
    Microphysiological systems (MPSs) are in vitro models that capture facets of in vivo organ function through use of specialized culture microenvironments, including 3D matrices and microperfusion. Here, we report an approach to co-culture multiple different MPSs linked together physiologically on re-useable, open-system microfluidic platforms that are compatible with the quantitative study of a range of compounds, including lipophilic drugs. We describe three different platform designs - "4-way", "7-way", and "10-way" - each accommodating a mixing chamber and up to 4, 7, or 10 MPSs. Platforms accommodate multiple different MPS flow configurations, each with internal re-circulation to enhance molecular exchange, and feature on-board pneumatically-driven pumps with independently programmable flow rates to provide precise control over both intra- and inter-MPS flow partitioning and drug distribution. We first developed a 4-MPS system, showing accurate prediction of secreted liver protein distribution and 2-week maintenance of phenotypic markers. We then developed 7-MPS and 10-MPS platforms, demonstrating reliable, robust operation and maintenance of MPS phenotypic function for 3 weeks (7-way) and 4 weeks (10-way) of continuous interaction, as well as PK analysis of diclofenac metabolism. This study illustrates several generalizable design and operational principles for implementing multi-MPS "physiome-on-a-chip" approaches in drug discovery.United States. Army Research Office (Grant W911NF-12-2-0039

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore