425 research outputs found

    A Physiological Role for Amyloid Beta Protein: Enhancement of Learning and Memory

    Get PDF
    Amyloid beta protein (A[beta]) is well recognized as having a significant role in the pathogenesis of Alzheimer's disease (AD). The reason for the presence of A[beta] and its physiological role in non-disease states is not clear. In these studies, low doses of A[beta] enhanced memory retention in two memory tasks and enhanced acetylcholine production in the hippocampus _in vivo_. We then tested whether endogenous A[beta] has a role in learning and memory in young, cognitively intact mice by blocking endogenous A[beta] in healthy 2-month-old CD-1 mice. Blocking A[beta] with antibody to A[beta] or DFFVG (which blocks A[beta] binding) or decreasing A[beta] expression with an antisense directed at the A[beta] precursor APP all resulted in impaired learning in T-maze foot-shock avoidance. Finally, A[beta]1-42 facilitated induction and maintenance of long term potentiation in hippocampal slices, whereas antibodies to A[beta] inhibited hippocampal LTP. These results indicate that in normal healthy young animals the presence of A[beta] is important for learning and memory

    Superconductivity in zigzag CuO chains

    Full text link
    Superconductivity has recently been discovered in Pr2_{2}Ba4_{4}Cu7_{7}O15−δ_{15-\delta} with a maximum TcT_c of about 15K. Since the CuO planes in this material are believed to be insulating, it has been proposed that the superconductivity occurs in the double (or zigzag) CuO chain layer. On phenomenological grounds, we propose a theoretical interpretation of the experimental results in terms of a new phase for the zigzag chain, labelled by C1_1S3/2_{3/2}. This phase has a gap for some of the relative spin and charge modes but no total spin gap, and can have a divergent superconducting susceptibility for repulsive interactions. A microscopic model for the zigzag CuO chain is proposed, and on the basis of density matrix renormalization group (DMRG) and bosonization studies of this model, we adduce evidence that supports our proposal.Comment: 10 pages, 5 figures; Journal-ref. adde

    Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations

    Get PDF
    The following article appeared in Yamada, S. A., Thompson, W. H., & Fayer, M. D. (2017). Water-anion hydrogen bonding dynamics: Ultrafast IR experiments and simulations. The Journal of Chemical Physics, 146(23), 234501.) and may be found at https://aip.scitation.org/doi/10.1063/1.4984766.Many of water’s remarkable properties arise from its tendency to form an intricate and robust hydrogen bond network. Understanding the dynamics that govern this network is fundamental to elucidating the behavior of pure water and water in biological and physical systems. In ultrafast nonlinear infrared experiments, the accessible time scales are limited by water’s rapid vibrational relaxation (1.8 ps for dilute HOD in H2O), precluding interrogation of slow hydrogen bond evolution in non-bulk systems. Here, hydrogen bonding dynamics in bulk D2O were studied from the perspective of the much longer lived (36.2 ps) CN stretch mode of selenocyanate (SeCN−) using polarization selective pump-probe (PSPP) experiments, two-dimensional infrared (2D IR) vibrational echo spectroscopy, and molecular dynamics simulations. The simulations make use of the empirical frequency mapping approach, applied to SeCN− for the first time. The PSPP experiments and simulations show that the orientational correlation function decays via fast (2.0 ps) restricted angular diffusion (wobbling-in-a-cone) and complete orientational diffusive randomization (4.5 ps). Spectral diffusion, quantified in terms of the frequency-frequency correlation function, occurs on two time scales. The initial 0.6 ps time scale is attributed to small length and angle fluctuations of the hydrogen bonds between water and SeCN−. The second 1.4 ps measured time scale, identical to that for HOD in bulk D2O, reports on the collective reorganization of the water hydrogen bond network around the anion. The experiments and simulations provide details of the anion-water hydrogen bonding and demonstrate that SeCN− is a reliable vibrational probe of the ultrafast spectroscopy of water

    Dynamical Correlation Functions using the Density Matrix Renormalization Group

    Full text link
    The density matrix renormalization group (DMRG) method allows for very precise calculations of ground state properties in low-dimensional strongly correlated systems. We investigate two methods to expand the DMRG to calculations of dynamical properties. In the Lanczos vector method the DMRG basis is optimized to represent Lanczos vectors, which are then used to calculate the spectra. This method is fast and relatively easy to implement, but the accuracy at higher frequencies is limited. Alternatively, one can optimize the basis to represent a correction vector for a particular frequency. The correction vectors can be used to calculate the dynamical correlation functions at these frequencies with high accuracy. By separately calculating correction vectors at different frequencies, the dynamical correlation functions can be interpolated and pieced together from these results. For systems with open boundaries we discuss how to construct operators for specific wavevectors using filter functions.Comment: minor revision, 10 pages, 15 figure

    Immittance Matching for Multi-dimensional Open-system Photonic Crystals

    Full text link
    An electromagnetic (EM) Bloch wave propagating in a photonic crystal (PC) is characterized by the immittance (impedance and admittance) of the wave. The immittance is used to investigate transmission and reflection at a surface or an interface of the PC. In particular, the general properties of immittance are useful for clarifying the wave propagation characteristics. We give a general proof that the immittance of EM Bloch waves on a plane in infinite one- and two-dimensional (2D) PCs is real when the plane is a reflection plane of the PC and the Bloch wavevector is perpendicular to the plane. We also show that the pure-real feature of immittance on a reflection plane for an infinite three-dimensional PC is good approximation based on the numerical calculations. The analytical proof indicates that the method used for immittance matching is extremely simplified since only the real part of the immittance function is needed for analysis without numerical verification. As an application of the proof, we describe a method based on immittance matching for qualitatively evaluating the reflection at the surface of a semi-infinite 2D PC, at the interface between a semi-infinite slab waveguide (WG) and a semi-infinite 2D PC line-defect WG, and at the interface between a semi-infinite channel WG and a semi-infinite 2D PC slab line-defect WG.Comment: 8 pages, 6 figure

    Liquid Crystal Phases of Quantum Hall Systems

    Full text link
    Mean-field calculations for the two dimensional electron gas (2DEG) in a large magnetic field with a partially filled Landau level with index N≥2N\geq 2 consistently yield ``stripe-ordered'' charge-density wave ground-states, for much the same reason that frustrated phase separation leads to stripe ordered states in doped Mott insulators. We have studied the effects of quantum and thermal fluctuations about such a state and show that they can lead to a set of electronic liquid crystalline states, particularly a stripe-nematic phase which is stable at T>0T>0. Recent measurements of the longitudinal resistivity of a set of quantum Hall devices have revealed that these systems spontaneously develop, at low temepratures, a very large anisotropy. We interpret these experiments as evidence for a stripe nematic phase, and propose a general phase diagram for this system.Comment: 9 pages, 3 figure

    Density matrix algorithm for the calculation of dynamical properties of low dimensional systems

    Full text link
    I extend the scope of the density matrix renormalization group technique developed by White to the calculation of dynamical correlation functions. As an application and performance evaluation I calculate the spin dynamics of the 1D Heisenberg chain.Comment: 4 pages + 4 figures in one Latex + 4 postscript file

    The Hyper Suprime-Cam Software Pipeline

    Full text link
    In this paper, we describe the optical imaging data processing pipeline developed for the Subaru Telescope's Hyper Suprime-Cam (HSC) instrument. The HSC Pipeline builds on the prototype pipeline being developed by the Large Synoptic Survey Telescope's Data Management system, adding customizations for HSC, large-scale processing capabilities, and novel algorithms that have since been reincorporated into the LSST codebase. While designed primarily to reduce HSC Subaru Strategic Program (SSP) data, it is also the recommended pipeline for reducing general-observer HSC data. The HSC pipeline includes high level processing steps that generate coadded images and science-ready catalogs as well as low-level detrending and image characterizations.Comment: 39 pages, 21 figures, 2 tables. Submitted to Publications of the Astronomical Society of Japa

    Hyperglycemia modulates extracellular amyloid-β concentrations and neuronal activity in vivo

    Get PDF
    Epidemiological studies show that patients with type 2 diabetes (T2DM) and individuals with a diabetes-independent elevation in blood glucose have an increased risk for developing dementia, specifically dementia due to Alzheimer’s disease (AD). These observations suggest that abnormal glucose metabolism likely plays a role in some aspects of AD pathogenesis, leading us to investigate the link between aberrant glucose metabolism, T2DM, and AD in murine models. Here, we combined two techniques — glucose clamps and in vivo microdialysis — as a means to dynamically modulate blood glucose levels in awake, freely moving mice while measuring real-time changes in amyloid-β (Aβ), glucose, and lactate within the hippocampal interstitial fluid (ISF). In a murine model of AD, induction of acute hyperglycemia in young animals increased ISF Aβ production and ISF lactate, which serves as a marker of neuronal activity. These effects were exacerbated in aged AD mice with marked Aβ plaque pathology. Inward rectifying, ATP-sensitive potassium (K(ATP)) channels mediated the response to elevated glucose levels, as pharmacological manipulation of K(ATP) channels in the hippocampus altered both ISF Aβ levels and neuronal activity. Taken together, these results suggest that K(ATP) channel activation mediates the response of hippocampal neurons to hyperglycemia by coupling metabolism with neuronal activity and ISF Aβ levels
    • …
    corecore