17 research outputs found

    Development of a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport

    Full text link
    Monte Carlo simulation is the most accurate method for absorbed dose calculations in radiotherapy. Its efficiency still requires improvement for routine clinical applications, especially for online adaptive radiotherapy. In this paper, we report our recent development on a GPU-based Monte Carlo dose calculation code for coupled electron-photon transport. We have implemented the Dose Planning Method (DPM) Monte Carlo dose calculation package (Sempau et al, Phys. Med. Biol., 45(2000)2263-2291) on GPU architecture under CUDA platform. The implementation has been tested with respect to the original sequential DPM code on CPU in phantoms with water-lung-water or water-bone-water slab geometry. A 20 MeV mono-energetic electron point source or a 6 MV photon point source is used in our validation. The results demonstrate adequate accuracy of our GPU implementation for both electron and photon beams in radiotherapy energy range. Speed up factors of about 5.0 ~ 6.6 times have been observed, using an NVIDIA Tesla C1060 GPU card against a 2.27GHz Intel Xeon CPU processor.Comment: 13 pages, 3 figures, and 1 table. Paper revised. Figures update

    Defining Ecological Drought for the Twenty-First Century

    Get PDF
    THE RISING RISK OF DROUGHT. Droughts of the twenty-first century are characterized by hotter temperatures, longer duration, and greater spatial extent, and are increasingly exacerbated by human demands for water. This situation increases the vulnerability of ecosystems to drought, including a rise in drought-driven tree mortality globally (Allen et al. 2015) and anticipated ecosystem transformations from one state to another—for example, forest to a shrubland (Jiang et al. 2013). When a drought drives changes within ecosystems, there can be a ripple effect through human communities that depend on those ecosystems for critical goods and services (Millar and Stephenson 2015). For example, the “Millennium Drought” (2002–10) in Australia caused unanticipated losses to key services provided by hydrological ecosystems in the Murray–Darling basin—including air quality regulation, waste treatment, erosion prevention, and recreation. The costs of these losses exceeded AUD $800 million, as resources were spent to replace these services and adapt to new drought-impacted ecosystems (Banerjee et al. 2013). Despite the high costs to both nature and people, current drought research, management, and policy perspectives often fail to evaluate how drought affects ecosystems and the “natural capital” they provide to human communities. Integrating these human and natural dimensions of drought is an essential step toward addressing the rising risk of drought in the twenty-first century

    GPU-based ultra fast dose calculation using a finite pencil beam model

    Full text link
    Online adaptive radiation therapy (ART) is an attractive concept that promises the ability to deliver an optimal treatment in response to the inter-fraction variability in patient anatomy. However, it has yet to be realized due to technical limitations. Fast dose deposit coefficient calculation is a critical component of the online planning process that is required for plan optimization of intensity modulated radiation therapy (IMRT). Computer graphics processing units (GPUs) are well-suited to provide the requisite fast performance for the data-parallel nature of dose calculation. In this work, we develop a dose calculation engine based on a finite-size pencil beam (FSPB) algorithm and a GPU parallel computing framework. The developed framework can accommodate any FSPB model. We test our implementation on a case of a water phantom and a case of a prostate cancer patient with varying beamlet and voxel sizes. All testing scenarios achieved speedup ranging from 200~400 times when using a NVIDIA Tesla C1060 card in comparison with a 2.27GHz Intel Xeon CPU. The computational time for calculating dose deposition coefficients for a 9-field prostate IMRT plan with this new framework is less than 1 second. This indicates that the GPU-based FSPB algorithm is well-suited for online re-planning for adaptive radiotherapy.Comment: submitted Physics in Medicine and Biolog

    Implementation and evaluation of various demons deformable image registration algorithms on GPU

    Full text link
    Online adaptive radiation therapy (ART) promises the ability to deliver an optimal treatment in response to daily patient anatomic variation. A major technical barrier for the clinical implementation of online ART is the requirement of rapid image segmentation. Deformable image registration (DIR) has been used as an automated segmentation method to transfer tumor/organ contours from the planning image to daily images. However, the current computational time of DIR is insufficient for online ART. In this work, this issue is addressed by using computer graphics processing units (GPUs). A grey-scale based DIR algorithm called demons and five of its variants were implemented on GPUs using the Compute Unified Device Architecture (CUDA) programming environment. The spatial accuracy of these algorithms was evaluated over five sets of pulmonary 4DCT images with an average size of 256x256x100 and more than 1,100 expert-determined landmark point pairs each. For all the testing scenarios presented in this paper, the GPU-based DIR computation required around 7 to 11 seconds to yield an average 3D error ranging from 1.5 to 1.8 mm. It is interesting to find out that the original passive force demons algorithms outperform subsequently proposed variants based on the combination of accuracy, efficiency, and ease of implementation.Comment: Submitted to Physics in Medicine and Biolog

    Kilauea Volcano Provides Hot Seismic Data for Joint Japanese-U.S. Experiment

    Get PDF
    A team of 25 researchers from the United States, Japan, and Italy joined the staff of the Hawaiian Volcano Observatory (HVO) from January 8 through February 9, 1996, to make the most detailed seismic recordings on Kilauea Volcano ever. One-hundred-sixteen portable seismographs were installed in and near Kilauea Crater in Hawaii Volcanoes National Park as a joint Japanese-U.S. research project to record volcanic earthquakes and tremor. The importance of these events has long been recognized, but their origin remains poorly understood due to inadequate network coverage and limitations of the analog instrumentation used in the past. On February 1, a swarm of over 500 earthquakes was recorded by the dense network, providing the best recording of an intrusive earthquake swarm at Kilauea. The data collected offer an unprecedented opportunity to understand earthquakes associated with magma transport
    corecore