17 research outputs found

    Bioelectromagnetics research within an Australian context: the Australian centre for electromagnetic bioeffects research (ACEBR)

    Get PDF
    Mobile phone subscriptions continue to increase across the world, with the electromagnetic fields (EMF) emitted by these devices, as well as by related technologies such as Wi-Fi and smart meters, now ubiquitous. This increase in use and consequent exposure to mobile communication (MC)-related EMF has led to concern about possible health effects that could arise from this exposure. Although much research has been conducted since the introduction of these technologies, uncertainty about the impact on health remains. The Australian Centre for Electromagnetic Bioeffects Research (ACEBR) is a National Health and Medical Research Council Centre of Research Excellence that is undertaking research addressing the most important aspects of the MC-EMF health debate, with a strong focus on mechanisms, neurodegenerative diseases, cancer, and exposure dosimetry. This research takes as its starting point the current scientific status quo, but also addresses the adequacy of the evidence for the status quo. Risk communication research complements the above, and aims to ensure that whatever is found, it is communicated effectively and appropriately. This paper provides a summary of this ACEBR research (both completed and ongoing), and discusses the rationale for conducting it in light of the prevailing science.Sarah P. Loughran ... Jim Manavis ... Robert Vink ... et al

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    GJ 367b: A dense, ultrashort-period sub-Earth planet transiting a nearby red dwarf star

    Get PDF
    Ultrashort-period (USP) exoplanets have orbital periods shorter than 1 day. Precise masses and radii of USP exoplanets could provide constraints on their unknown formation and evolution processes. We present the work from Lam et al. 2021 (Science, 374, 1271) and report the detection and characterization of the USP planet GJ 367b using high-precision photometry and radial velocity observations. GJ 367b orbits a bright (V-band magnitude of 10.2), nearby, and red (M-type) dwarf star every 7.7 hours. GJ 367b has a radius of 0.718 ± 0.054 Earth-radii and a mass of 0.546 ± 0.078 Earth-masses, making it a sub-Earth planet. The corresponding bulk density is 8.106 ± 2.165 grams per cubic centimeter - close to that of iron. An interior structure model predicts that the planet has an iron core radius fraction of 86 ± 5%, similar to that of Mercury's interior

    Distributed antenna system for mobile phone coverage in a hospital: EMI considerations

    No full text
    We compared the in-band radio-frequency transmit power levels of a mobile phone handset used in a hospital building served by a distributed antenna system (DAS) with data collected in other buildings that do not have a DAS installed. Power levels were found to be less dispersed and on average lower with DAS than in a non-DAS environment. A DAS environment has the potential to lower the risk of interference to medical devices from handset in-band transmissions if careful attention is paid to the design of a DAS to eliminate coverage 'holes' arising from localised in-building obstructions

    Potential GPRS 900/180-MHz and WCDMA 1900-MHz Interference to Medical Devices

    No full text

    Distributed antenna system for mobile phone coverage in a hospital: EMI considerations

    No full text
    We compared the in-band radio-frequency transmit power levels of a mobile phone handset used in a hospital building served by a distributed antenna system (DAS) with data collected in other buildings that do not have a DAS installed. Power levels were found to be less dispersed and on average lower with DAS than in a non-DAS environment. A DAS environment has the potential to lower the risk of interference to medical devices from handset in-band transmissions if careful attention is paid to the design of a DAS to eliminate coverage 'holes' arising from localised in-building obstructions

    EEG electrode caps can reduce SAR induced in the head by GSM900 mobile phones

    Get PDF
    This paper investigates the influence of EEG electrode caps on specific absorption rate (SAR) in the head from a GSM900 mobile phone (217-Hz modulation, peak power output 2 W). SAR measurements were recorded in an anthropomorphic phantom using a precision robotic system. Peak 10 g average SAR in the whole head and in just the temporal region was compared for three phantom arrangements; no cap, 64-electrode Electro-Cap, and 64-electrode Quick-Cap . Relative to the no cap arrangement, the Electro-Cap and Quick-Cap caused a peak SAR (10 g) reduction of 14% and 18% respectively in both the whole head and in the temporal region. Additional computational modeling confirmed that SAR (10 g) is reduced by the presence of electrode leads and that the extent of the effect varies according to the orientation of the leads with respect to the radiofrequency (RF) source. The modeling also indicated that the nonconductive shell between the electrodes and simulated head material does not significantly alter the electrode lead shielding effect. The observed SAR reductions are not likely to be sufficiently large to have accounted for null EEG findings in the past but should nonetheless be noted in studies aiming to measure and report human brain activity under similar exposure conditions

    Modeling the effect of adverse environmental conditions and clothing on temperature rise in a human body exposed to radio frequency electromagnetic fields

    No full text
    This study considers the computationally determined thermal profile of a fully clothed, finely discretized, heterogeneous human body model, subject to the maximum allowable reference level for a 1-GHz radio frequency electromagnetic field for a worker, and also subject to adverse environmental conditions, including high humidity and high ambient temperature. An initial observation is that while electromagnetic fields at the occupational safety limit will contribute an additional thermal load to the tissues, and subsequently, cause an elevated temperature, the magnitude of this effect is far outweighed by that due to the conditions including the ambient temperature, relative humidity, and the type of clothing worn. It is envisaged that the computational modeling approach outlined in this paper will be suitably modified in future studies to evaluate the thermal response of a body at elevated metabolic rates, and for different body shapes and sizes including children and pregnant women

    Exposure compliance methodologies for multiple input multiple output (mimo) enabled networks and terminals

    No full text
    Multiple input multiple output (MIMO) enabled handsets and base-stations feature antenna systems that generate electromagnetic fields for which relevant exposure standards and guidelines do not explicitly define compliance testing methodologies. Here, through computational modeling, we explore several field summation schemes for evaluating such exposures and propose compliance testing methodologies that limit the degree of exposure under/over-estimation for both base stations and handsets. The methodologies rely on scalar field probe measurements thus avoiding significant equipment upgrades and are applicable to cases where access to signals from eachMIMO antenna element can be arranged
    corecore