73 research outputs found

    On The Effects of Idiotypic Interactions for Recommendation Communities in Artificial Immune Systems

    Get PDF
    It has previously been shown that a recommender based on immune system idiotypic principles can outperform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbour’s recommendations

    'On the Effects of Idiotypic Interactions for Recommendation Communities in Artificial Immune Systems'

    Get PDF
    It has previously been shown that a recommender based on immune system idiotypic principles can outperform one based on correlation alone. This paper reports the results of work in progress, where we undertake some investigations into the nature of this beneficial effect. The initial findings are that the immune system recommender tends to produce different neighbourhoods, and that the superior performance of this recommender is due partly to the different neighbourhoods, and partly to the way that the idiotypic effect is used to weight each neighbour's recommendations

    A Recommender System based on Idiotypic Artificial Immune Networks

    Get PDF
    The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an Artificial Immune System (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by Collaborative Filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen-antibody interaction for matching and idiotypic antibody-antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques

    A Recommender System based on the Immune Network

    Get PDF
    Abstract-The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques

    An Artificial Immune System Based Recommender

    Get PDF
    The immune system is a complex biological system with a highly distributed, adaptive and self-organising nature. This paper presents an artificial immune system (AIS) that exploits some of these characteristics and is applied to the task of film recommendation by collaborative filtering (CF). Natural evolution and in particular the immune system have not been designed for classical optimisation. However, for this problem, we are not interested in finding a single optimum. Rather we intend to identify a sub-set of good matches on which recommendations can be based. It is our hypothesis that an AIS built on two central aspects of the biological immune system will be an ideal candidate to achieve this: Antigen - antibody interaction for matching and antibody - antibody interaction for diversity. Computational results are presented in support of this conjecture and compared to those found by other CF techniques. Notes: Uwe Aickelin, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, U

    The Danger Theory and its Application to Artificial Immune Systems

    Get PDF
    Over the last decade, a new idea challenging the classical self-non-self viewpoint has become popular amongst immunologists. It is called the Danger Theory. In this conceptual paper, we look at this theory from the perspective of Artificial Immune System practitioners. An overview of the Danger Theory is presented with particular emphasis on analogies in the Artificial Immune Systems world. A number of potential application areas are then used to provide a framing for a critical assessment of the concept, and its relevance for Artificial Immune Systems. Notes: Uwe Aickelin, Department of Computing, University of Bradford, Bradford, BD7 1D

    Semantic Blogging : Spreading the Semantic Web Meme

    Get PDF

    Introducting Dendritic Cells as a Novel Immune-Inspired Algorithm for Anomaly Detection

    Get PDF
    Dendritic cells are antigen presenting cells that provide a vital link between the innate and adaptive immune system. Research into this family of cells has revealed that they perform the role of coordinating T-cell based immune responses, both reactive and for generating tolerance. We have derived an algorithm based on the functionality of these cells, and have used the signals and differentiation pathways to build a control mechanism for an artificial immune system. We present our algorithmic details in addition to some preliminary results, where the algorithm was applied for the purpose of anomaly detection. We hope that this algorithm will eventually become the key component within a large, distributed immune system, based on sound imnological concepts
    • …
    corecore