194 research outputs found
Recommended from our members
Stereotactic radiosurgery for vestibular schwannomas.
Stereotactic radiosurgery (SRS) maintains an important role in managing vestibular schwannoma (VS). Long-term clinical data have clearly established the safety and efficacy of the procedure for managing Koos low grade to intermediate grade VS. Historically, the procedure was developed via a multidisciplinary approach that involves physicians (eg, neurosurgeons and radiation oncologists) as well as clinical specialists (eg, radiation physicists). In this paper, we have reviewed current technical and clinical practices of SRS for VS from a procedural specialist's perspective and from a clinician's perspective
Resection Cavity Contraction Effects in the Use of Radioactive Sources (1-25 versus Cs-131) for Intra-Operative Brain Implants.
Background and Objectives Intra-parenchymal brain surgical resection cavities usually contract in volume following low dose rate (LDR) brachytherapy implants. In this study, we systematically modeled and assessed dose variability resulting from such changes for I-125 versus Cs-131 radioactive sources. Methods Resection cavity contraction was modeled based on 95 consecutive patient cases, using surveillance magnetic resonance (MR) images. The model was derived for single point source geometry and then fully simulated in 3D where I-125 or Cs-131 seeds were placed on the surface of an ellipsoidal resection cavity. Dose distribution estimated via TG-43 calculations and biological effective dose (BED) calculations were compared for both I-125 and Cs-131, accounting for resection cavity contractions. Results Resection cavity volumes were found to contract with an effective half-life of approximately 3.4 months (time to reach 50% of maximum volume contraction). As a result, significant differences in dose distributions were noted between I-125 and Cs-131 radioactive sources. For example, when comparing with static volume, assuming no contraction effect, I-125 exhibited a 31.8% and 30.5% increase in D90 and D10 values (i.e., the minimal dose to 90% and 10% of the volume respectively) in the peripheral target areas over the follow-up period of 20.5 months. In contrast, Cs-131 seeds only exhibited a 1.44% and 0.64% increase in D90 and D10 values respectively. Such discrepancy is likewise similar for BED calculations. Conclusion Resection cavity contractions affects Cs-131 dose distribution significantly less than that of I-125 for permanent brain implants. Care must be taken to account for cavity contractions when prescribing accumulative doses of a radioactive source in performing the brain implant procedures
Recommended from our members
Precision based approach to tailoring radiotherapy in the multidisciplinary management of pediatric central nervous system tumors.
Modern day survivorship from childhood malignancies is estimated to be over 80%. However, central nervous system tumors remain the leading cause of cancer mortality in children and is the most common solid tumor in this population. Improved survivorship is, in part, a result of improved multidisciplinary care, often with a combination of surgery, radiation therapy, and systemic therapy. With improved survival, long term effects of treatment and quality of life impacts have been recognized and pose a challenge to maximize the therapeutic ratio of treatment. It has been increasingly more apparent that precise risk stratification, such as with the inclusion of molecular classification, is instrumental in efforts to tailor radiotherapy for appropriate treatment, generally towards de-intensification for this vulnerable patient population. In addition, advances in radiotherapy techniques have allowed greater conformality and accuracy of treatment for those who do require radiotherapy for tumor control. Ongoing efforts to tailor radiotherapy, including de-escalation, omission, or intensification of radiotherapy, continue to improve as increasing insight into tumor heterogeneity is recognized, coupled with advances in precision medicine employing novel molecularly-targeted therapeutics
Patient-Specific Fetal Dose Determination for Multi-Target Gamma Knife Radiosurgery: Computational Model and Case Report.
A 42-year-old woman at 29 weeks gestation via in vitro fertilization who presented with eight metastatic brain lesions received Gamma Knife stereotactic radiosurgery (GKSRS) at our institution. In this study, we report our clinical experience and a general procedure of determining the fetal dose from patient-specific treatment plans and we describe quality assurance measurements to guide the safe practice of multi-target GKSRS of pregnant patients. To estimate fetal dose pre-treatment, peripheral dose-to-focal dose ratios (PFRs) were measured in a phantom at the distance approximating the fundus of uterus. Post-treatment, fetal dose was calculated from the actual patient treatment plan. Quality assurance measurements were carried out via the extrapolation dosimetry method in a head phantom at increasing distances along the longitudinal axis. The measurements were then empirically fitted and the fetal dose was extracted from the curve. The computed and measured fetal dose values were compared with each other and associated radiation risk was estimated. Based on low estimated fetal dose from preliminary phantom measurements, the patient was accepted for GKSRS. Eight brain metastases were treated with prescription doses of 15-19 Gy over 143 min involving all collimator sizes as well as composite sector mixed shots. Direct fetal dose computation based on the actual patient's treatment plan estimated a maximum fetal dose of 0.253 cGy, which was in agreement with surface dose measurements at the level of the patient's uterine fundus during the actual treatment. Later phantom measurements also estimated fetal dose to be in the range of 0.21-0.28 cGy (dose extrapolation curve R2 = 0.998). Using the National Council on Radiation Protection and Measurements (NCRP) population-based model, we estimate the fetal risk of secondary malignancy, which is the primary toxicity after 25 weeks gestation, to be less than 0.01%. Of note, the patient delivered the baby via scheduled cesarean section at 36 weeks without complications attributable to the GKSRS procedure. GKSRS of multiple brain metastases was demonstrated to be safe and feasible during pregnancy. The applicability of a general patient-specific fetal dose determination method was also demonstrated for the first time for such a treatment
Recommended from our members
An Open-Source Tool for Anisotropic Radiation Therapy Planning in Neuro-oncology Using DW-MRI Tractography.
There is evidence from histopathological studies that glioma tumor cells migrate preferentially along large white matter bundles. If the peritumoral white matter structures can be used to predict the likely trajectory of migrating tumor cells outside of the surgical margin, then this information could be used to inform the delineation of radiation therapy (RT) targets. In theory, an anisotropic expansion that takes large white matter bundle anatomy into account may maximize the chances of treating migrating cancer cells and minimize the amount of brain tissue exposed to high doses of ionizing radiation. Diffusion-weighted MRI (DW-MRI) can be used in combination with fiber tracking algorithms to model the trajectory of large white matter pathways using the direction and magnitude of water movement in tissue. The method presented here is a tool for translating a DW-MRI fiber tracking (tractography) dataset into a white matter path length (WMPL) map that assigns each voxel the shortest distance along a streamline back to a specified region of interest (ROI). We present an open-source WMPL tool, implemented in the package Diffusion Imaging in Python (DIPY), and code to convert the resulting WMPL map to anisotropic contours for RT in a commercial treatment planning system. This proof-of-concept lays the groundwork for future studies to evaluate the clinical value of incorporating tractography modeling into treatment planning
Assessment of image quality and dose calculation accuracy on kV CBCT, MV CBCT, and MV CT images for urgent palliative radiotherapy treatments.
A clinical workflow was developed for urgent palliative radiotherapy treatments that integrates patient simulation, planning, quality assurance, and treatment in one 30-minute session. This has been successfully tested and implemented clinically on a linac with MV CBCT capabilities. To make this approach available to all clinics equipped with common imaging systems, dose calculation accuracy based on treatment sites was assessed for other imaging units. We evaluated the feasibility of palliative treatment planning using on-board imaging with respect to image quality and technical challenges. The purpose was to test multiple systems using their commercial setup, disregarding any additional in-house development. kV CT, kV CBCT, MV CBCT, and MV CT images of water and anthropomorphic phantoms were acquired on five different imaging units (Philips MX8000 CT Scanner, and Varian TrueBeam, Elekta VersaHD, Siemens Artiste, and Accuray Tomotherapy linacs). Image quality (noise, contrast, uniformity, spatial resolution) was evaluated and compared across all machines. Using individual image value to density calibrations, dose calculation accuracies for simple treatment plans were assessed for the same phantom images. Finally, image artifacts on clinical patient images were evaluated and compared among the machines. Image contrast to visualize bony anatomy was sufficient on all machines. Despite a high noise level and low contrast, MV CT images provided the most accurate treatment plans relative to kV CT-based planning. Spatial resolution was poorest for MV CBCT, but did not limit the visualization of small anatomical structures. A comparison of treatment plans showed that monitor units calculated based on a prescription point were within 5% difference relative to kV CT-based plans for all machines and all studied treatment sites (brain, neck, and pelvis). Local dose differences >5% were found near the phantom edges. The gamma index for 3%/3 mm criteria was ≥95% in most cases. Best dose calculation results were obtained when the treatment isocenter was near the image isocenter for all machines. A large field of view and immediate image export to the treatment planning system were essential for a smooth workflow and were not provided on all devices. Based on this phantom study, image quality of the studied kV CBCT, MV CBCT, and MV CT on-board imaging devices was sufficient for treatment planning in all tested cases. Treatment plans provided dose calculation accuracies within an acceptable range for simple, urgently planned palliative treatments. However, dose calculation accuracy was compromised towards the edges of an image. Feasibility for clinical implementation should be assessed separately and may be complicated by machine specific features. Image artifacts in patient images and the effect on dose calculation accuracy should be assessed in a separate, machine-specific study. PACS number(s): 87.55.D-, 87.57.C-, 87.57.Q
Recommended from our members
High-Flow Vascular Malformations in Children.
Children can have a variety of intracranial vascular anomalies ranging from small and incidental with no clinical consequences to complex lesions that can cause substantial neurologic deficits, heart failure, or profoundly affect development. In contrast to high-flow lesions with direct arterial-to-venous shunts, low-flow lesions such as cavernous malformations are associated with a lower likelihood of substantial hemorrhage, and a more benign course. Management of vascular anomalies in children has to incorporate an understanding of how treatment strategies may affect the normal development of the central nervous system. In this review, we discuss the etiologies, epidemiology, natural history, and genetic risk factors of three high-flow vascular malformations seen in children: brain arteriovenous malformations, intracranial dural arteriovenous fistulas, and vein of Galen malformations
Recommended from our members
Phase I study of dose escalation to dominant intraprostatic lesions using high-dose-rate brachytherapy.
PurposeRadiation dose escalation for prostate cancer improves biochemical control but is limited by toxicity. Magnetic resonance spectroscopic imaging (MRSI) can define dominant intraprostatic lesions (DIL). This phase I study evaluated dose escalation to MRSI-defined DIL using high-dose-rate (HDR) brachytherapy.Material and methodsEnrollment was closed early due to low accrual. Ten patients with prostate cancer (T2a-3b, Gleason 6-9, PSA < 20) underwent pre-treatment MRSI, and eight patients had one to three DIL identified. The eight enrolled patients received external beam radiation therapy to 45 Gy and HDR brachytherapy boost to the prostate of 19 Gy in 2 fractions. MRSI images were registered to planning CT images and DIL dose-escalated up to 150% of prescription dose while maintaining normal tissue constraints. The primary endpoint was genitourinary (GU) toxicity.ResultsThe median total DIL volume was 1.31 ml (range, 0.67-6.33 ml). Median DIL boost was 130% of prescription dose (range, 110-150%). Median urethra V120 was 0.15 ml (range, 0-0.4 ml) and median rectum V75 was 0.74 ml (range, 0.1-1.0 ml). Three patients had acute grade 2 GU toxicity, and two patients had late grade 2 GU toxicity. No patients had grade 2 or higher gastrointestinal toxicity, and no grade 3 or higher toxicities were noted. There were no biochemical failures with median follow-up of 4.9 years (range, 2-8.5 years).ConclusionsDose escalation to MRSI-defined DIL is feasible. Toxicity was low but incompletely assessed due to limited patients' enrollment
eIF4GI links nutrient sensing by mTOR to cell proliferation and inhibition of autophagy
Translation initiation factors have complex functions in cells that are not yet understood. We show that depletion of initiation factor eIF4GI only modestly reduces overall protein synthesis in cells, but phenocopies nutrient starvation or inhibition of protein kinase mTOR, a key nutrient sensor. eIF4GI depletion impairs cell proliferation, bioenergetics, and mitochondrial activity, thereby promoting autophagy. Translation of mRNAs involved in cell growth, proliferation, and bioenergetics were selectively inhibited by reduction of eIF4GI, as was the mRNA encoding Skp2 that inhibits p27, whereas catabolic pathway factors were increased. Depletion or overexpression of other eIF4G family members did not recapitulate these results. The majority of mRNAs that were translationally impaired with eIF4GI depletion were excluded from polyribosomes due to the presence of multiple upstream open reading frames and low mRNA abundance. These results suggest that the high levels of eIF4GI observed in many breast cancers might act to specifically increase proliferation, prevent autophagy, and release tumor cells from control by nutrient sensing
- …