2 research outputs found

    Bisacylphosphane oxides as photo-latent cytotoxic agents and potential photo-latent anticancer drugs

    Get PDF
    Bisacylphosphane oxides (BAPOs) are established as photoinitiators for industrial applications. Light irradiation leads to their photolysis, producing radicals. Radical species induce oxidative stress in cells and may cause cell death. Hence, BAPOs may be suitable as photolatent cytotoxic agents, but such applications have not been investigated yet. Herein, we describe for the first time a potential use of BAPOs as drugs for photolatent therapy. We show that treatment of the breast cancer cell lines MCF-7 and MDA-MB-231 and of breast epithelial cells MCF-10A with BAPOs and UV irradiation induces apoptosis. Cells just subjected to BAPOs or UV irradiation alone are not affected. The induction of apoptosis depend on the BAPO and the irradiation dose. We proved that radicals are the active species since cells are rescued by an antioxidant. Finally, an optimized BAPO-derivative was designed which enters the cells more efficiently and thus leads to stronger effects at lower doses

    Cancer-Associated Intermediate Conductance Ca2+-Activated K+ Channel KCa3.1

    No full text
    Several tumor entities have been reported to overexpress KCa3.1 potassium channels due to epigenetic, transcriptional, or post-translational modifications. By modulating membrane potential, cell volume, or Ca2+ signaling, KCa3.1 has been proposed to exert pivotal oncogenic functions in tumorigenesis, malignant progression, metastasis, and therapy resistance. Moreover, KCa3.1 is expressed by tumor-promoting stroma cells such as fibroblasts and the tumor vasculature suggesting a role of KCa3.1 in the adaptation of the tumor microenvironment. Combined, this features KCa3.1 as a candidate target for innovative anti-cancer therapy. However, immune cells also express KCa3.1 thereby contributing to T cell activation. Thus, any strategy targeting KCa3.1 in anti-cancer therapy may also modulate anti-tumor immune activity and/or immunosuppression. The present review article highlights the potential of KCa3.1 as an anti-tumor target providing an overview of the current knowledge on its function in tumor pathogenesis with emphasis on vasculo- and angiogenesis as well as anti-cancer immune responses
    corecore