91 research outputs found

    Intra-burst firing characteristics as network state parameters

    Get PDF
    Introduction \ud In our group we are aiming to demonstrate learning and memory capabilities of cultured networks of cortical neurons. A first step is to identify parameters that accurately describe changes in the network due to learning. Usually, such parameters are calculated from the responses to test-stimuli before and after a learning experiment. We propose that parameters should be calculated from the spontaneous activity before and after a learning experiment, as the applying of test-stimuli itself may alter the network. Since bursting is dominant in our cultures, we have investigated its spatio-temporal structure. \ud \ud Methods \ud Networks of cortical neurons were cultured on a MEA. Over a period from 9 to 35 DIV, the spontaneous activity has been measured on a regular basis. Measurements on a single day are always continuous; otherwise cultures are kept in a stove under controlled conditions (37 ËšC, 5% CO2, 100% humidity). Network bursts were detected by analysing the Array-Wide Spiking Rate (AWSR, the sum of activity over all electrodes). Next, we estimated the instantaneous AWSR during a burst by convolving spike-occurrences with a Gaussian function. We investigated the changes in burst profiles over time by aligning them to their peak AWSR. In 4 hour recording sessions, we grouped the burst profiles over 1 hour, resulting in 4 average burst profiles per day. In addition, a sufficient amount of aligned bursts yielded enough data to calculate the contribution of each recording site. \ud \ud Results \ud The burst profiles, calculated over a period of 1 hour, generally show little variation (figure 1). In subsequent hours, the profiles gradually change shape. Over a period of days however, the shape can change dramatically (figure 2). The relatively slow changes over the period of hours indicate an underlying probabilistic structure in the AWSR during bursts. The apparent structure in the burst profiles result from the relationships between individual recording sites, and thus also on the connectivity in the neural network. This is revealed in more detail by showing the contributions of individual sites (figure 3). The spike envelopes have a shape that is too detailed to be described accurately by a small set of parameters. \ud \ud Discussion \ud The burst profiles prove to be stable over a period of one hour, and gradually change their shape over several hours, as has also been suggested in [1]. The day-to-day changes in burst profiles may be the result of these gradual changes, thereby suggesting an intrinsically changing network. However, they can also be the result of putting the cultures back in the stove. The spike envelopes per recording site offer more detailed descriptions of the network state than the burst profiles. This may however be the amount of detail required to reveal the changes made during learning experiments. A subsequent refinement can be made by identifying distinct subgroups of bursts, as has been suggested in [2]

    Cultured cortical networks described by conditional firing probabilities

    Get PDF
    Networks of cortical neurons were grown over multi electrode arrays to enable simultaneous measu-rement of action potentials from 60 electrodes. All possible pairs of electrodes (i,j) were tested for syn-chronized activity. We calculated conditional firing probability (CFPi,j[τ]) as the probability of an action potential at electrode j at t=τ, given that a spike was detected at i at t=0. If a CFPi,j[τ] distribution clearly deviated from flat, electrodes i and j were considered related. A function was fitted to each CFP-curve to obtain parameters for strength and delay. In young cultures the set of identified relationships changed rather quickly. At 16 days in vitro (DIV) 50% of the set changed within one day. Beyond 25 DIV this set stabilized: during a period of a week more than 50% of the set remained intact. Most individual relationships developed rather gradually. Moreover, beyond 25 DIV relational strength appeared quite stable during periods of ≈ 10 hours, with coefficients of variation (100×SD/mean) of ≈ 25% on average. CFP analysis provides a robust method to describe the stable underlying probabilistic structure of highly varying spontaneous activity in cultured cortical networks. It may offer a suitable basis for plasticity studies, in which induced changes should exceed spontaneous fluctuations. CFP analysis is likely to describe the network in sufficient detail to detect subtle changes in individual relationships. Analysis of data continuously recorded for ≈ 6 weeks, showed that highest stability is reached after ≈ 25 DIV, suggesting the 4th and 5th week as a suitable period for plasticity studies.\ud \u

    Extracellular electrical signals in a neuron-surface junction: model of heterogeneous membrane conductivity

    Full text link
    Signals recorded from neurons with extracellular planar sensors have a wide range of waveforms and amplitudes. This variety is a result of different physical conditions affecting the ion currents through a cellular membrane. The transmembrane currents are often considered by macroscopic membrane models as essentially a homogeneous process. However, this assumption is doubtful, since ions move through ion channels, which are scattered within the membrane. Accounting for this fact, the present work proposes a theoretical model of heterogeneous membrane conductivity. The model is based on the hypothesis that both potential and charge are distributed inhomogeneously on the membrane surface, concentrated near channel pores, as the direct consequence of the inhomogeneous transmembrane current. A system of continuity equations having non-stationary and quasi-stationary forms expresses this fact mathematically. The present work performs mathematical analysis of the proposed equations, following by the synthesis of the equivalent electric element of a heterogeneous membrane current. This element is further used to construct a model of the cell-surface electric junction in a form of the equivalent electrical circuit. After that a study of how the heterogeneous membrane conductivity affects parameters of the extracellular electrical signal is performed. As the result it was found that variation of the passive characteristics of the cell-surface junction, conductivity of the cleft and the cleft height, could lead to different shapes of the extracellular signals

    Coupling of Semiconductor Nanowires with Neurons and Their Interfacial Structure

    Get PDF
    We report on the compatibility of various nanowires with hippocampal neurons and the structural study of the neuron–nanowire interface. Si, Ge, SiGe, and GaN nanowires are compatible with hippocampal neurons due to their native oxide, but ZnO nanowires are toxic to neuron due to a release of Zn ion. The interfaces of fixed Si nanowire and hippocampal neuron, cross-sectional samples, were prepared by focused ion beam and observed by transmission electron microscopy. The results showed that the processes of neuron were adhered well on the nanowire without cleft

    Self-Organized Criticality in Developing Neuronal Networks

    Get PDF
    Recently evidence has accumulated that many neural networks exhibit self-organized criticality. In this state, activity is similar across temporal scales and this is beneficial with respect to information flow. If subcritical, activity can die out, if supercritical epileptiform patterns may occur. Little is known about how developing networks will reach and stabilize criticality. Here we monitor the development between 13 and 95 days in vitro (DIV) of cortical cell cultures (n = 20) and find four different phases, related to their morphological maturation: An initial low-activity state (≈19 DIV) is followed by a supercritical (≈20 DIV) and then a subcritical one (≈36 DIV) until the network finally reaches stable criticality (≈58 DIV). Using network modeling and mathematical analysis we describe the dynamics of the emergent connectivity in such developing systems. Based on physiological observations, the synaptic development in the model is determined by the drive of the neurons to adjust their connectivity for reaching on average firing rate homeostasis. We predict a specific time course for the maturation of inhibition, with strong onset and delayed pruning, and that total synaptic connectivity should be strongly linked to the relative levels of excitation and inhibition. These results demonstrate that the interplay between activity and connectivity guides developing networks into criticality suggesting that this may be a generic and stable state of many networks in vivo and in vitro

    ¿Psicología de la Educación o Psicología Escolar? Esa es la cuestión

    Get PDF
    Este artigo apresenta alguns dados oriundos da tese de doutorado sobre a história do campo de conhecimento e prática da Psicologia em sua relação com a Educação no Brasil. Este estudo foi conduzido baseado no fundamento epistêmico-filosófico do materialismo histórico dialético e na nova história, utilizando fontes bibliográficas históricas e cinco relatos orais de personagens da Psicologia Educacional e Escolar. Os depoimentos e o material das fontes escritas constituíram o corpus documental cuja organização seguiu a metodologia da história oral e historiografia plural. Foi realizada análise descritivo-analítica compreendida em duas etapas: a) análise documental (fontes não orais) e b) construção de indicadores e núcleos de significação dos registros orais. A partir das análises, compôs-se uma periodização da história da Psicologia Educacional e Escolar brasileira por meio de marcos históricos da área. No presente artigo destaca-se a discussão acerca da conceituação e terminologias utilizadas pela Psicologia Educacional e Escolar ao longo do tempo e de como essas mudanças nas nomenclaturas da área refletem questões epistemológicas, ideológicas e políticas
    • …
    corecore