6 research outputs found

    The Quadrupole Magnets for the LHC Injection Transfer Lines

    Get PDF
    Two injection transfer lines, each about 2.8 km long, are being built to transfer protons at 450 GeV from the Super Proton Synchrotron (SPS) to the Large Hadron Collider (LHC). A total of 180 quadrupole magnets are required; they are produced in the framework of the contribution of the Russian Federation to the construction of the LHC. The classical quadrupoles, built from laminated steel cores and copper coils, have a core length of 1.4 m, an inscribed diameter of 32 mm and a strength of 53.5 T/m at a current of 530 A. The total weight of one magnet is 1.1 ton. For obtaining the required field quality at the small inscribed diameter, great care in the stamping of the laminations and the assembly of quadrants is necessary. Special instruments have been developed to measure, with a precision of some mm, the variations of the pole gaps over the full length of the magnet and correlate them to the obtained field distribution. The design has been developed in a collaboration between BINP and CERN. Fabrication and the magnetic measurements are done at BINP and should be finished at the end of the year 2000

    Experience with information and communication technology in mastering medical knowledge based on intelligence cards

    No full text
    We consider the information and communication technology of conducting classes using intelligence cards that meets the requirements of the modern subject-subject paradigm of education, which obliges one to be guided by the principle of communication. This principle implies significant changes in the organization of the process of interaction between the teacher and students in the classroom. The following parameters characterize such a technology for conducting a lesson: speech-cognitive activity, functionality, heuristic, motivated actions, the search for personal meaning in the work of students in the lesson. To implement these parameters in the educational process at A.F. Mozhaysky Military Space Academy. and S. M. Kirov Military Medical Academy used the capabilities of intelligence cards as a tool for information and communication technology. The innovation of the latter lies in the fact that the educational process is based on the active work of students both during the lesson and during the organization of their independent work, allowing them to effectively absorb educational information and subsequently apply it in practical activities. The study reflects the experience and describes an effective educational methodology using intelligence cards for lectures, practical classes, independent work of students and their research work. As an illustrative example, one of the developed intelligence cards is given and the methodological support of the lesson on the study of measures aimed at maintaining and strengthening the health of military personnel is described.</jats:p

    Статус накопителя ТНК (г. Зеленоград)

    No full text
    In 2000, after a long break, works on creation of a technological storage ring complex (TSC) have been renewed in ZELENOGRAD. TSC was developed at Budker INP of Siberian Branch of Russian Academy of Science. It consists of a linear accelerator on the electron energy up to 80 MeV, a small storage ring on the energy 450 MeV, a main storage ring on the energy 2 GeV and two electron transfer lines (TL-1 and TL-2). The Main Ring (MR) with energy of electrons 2 GeV is the dedicated synchrotron radiation source intended for the decision of problem of submicron technologies and realization of various researches in a range of wavelengths of 0.2…2000 Å. Linac was mounted and put into operation during 2000-2002. The circulating electron current was received in small storage ring in 2005. Currently, the assembling of TL-2 is being completed. The inspection of the main storage ring equipment made before is carried out. Besides, a modification of all control and power supply system MR is done and a modern electronic element base will be introduced. The status and the nearest planes concerning TSC main storage ring are described.У 2000 р. після довгої перерви відновилися роботи по створенню технологічного накопичувального комплексу - ТНК, у м. Зеленограді. ТНК був розроблений в ІЯФ СВ РАН. Він складається з лінійного прискорювача (ЛП) на енергію до 80 МеВ, малого накопичувача (МН) на енергію 450 МеВ, основного великого накопичувача (ВН) на енергію 2,2 ГеВ і двох каналів перепуску (ЕОК-1 й ЕОК-2). Накопичувач електронів з енергією електронів Е = 2,2 ГеВ є спеціалізованим джерелом СВ, призначеним для вирішення проблем субмікронних технологій, а також для проведення досліджень у проміжку довжин хвиль 0.2…2000 Å. Лінійний прискорювач був змонтований і запущений протягом 2000-2002 р. У 2005 р. був отриманий циркулюючий струм електронів у Малому накопичувачі. У цей час закінчується монтаж ЕОК-2. Проводиться ревізія устаткування ВН. Крім того, проводиться модернізація всіх систем керування і живлення і перехід на сучасну елементну базу. Описується статус ТНК і найближчі плани по монтажу і запуску ВН.В 2000 г. после долгого перерыва возобновились работы по созданию технологического накопительного комплекса – ТНК, в г. Зеленограде. ТНК был разработан в ИЯФ СО РАН. Он состоит из линейного ускорителя (ЛУ) на энергию до 80 МэВ, Малого накопителя (МН) на энергию 450 МэВ, основного большого накопителя (БН) на энергию 2.2 ГэВ и двух каналов перепуска (ЭОК-1 и ЭОК-2). Накопитель электронов с энергией электронов Е = 2.2 ГэВ является специализированным источником СИ, предназначенным для решения проблем субмикронных технологий, а также для проведения исследований в области длин волн 0.2…2000 ангстрем. Линейный ускоритель был смонтирован и запущен в течение 2000-2002 г. В 2005 г. был получен циркулирующий ток электронов в Малом накопителе. В настоящее время заканчивается монтаж ЭОК-2. Проводится ревизия оборудования БН. Кроме того, проводится модернизация всех систем управления и питания и переход на современную элементную базу. Описывается статус ТНК и ближайшие планы по монтажу и запуску БН.SOFT is developed by Kurchatov Synchrotron Radiation and Nanotechnology Center
    corecore