90 research outputs found

    Is there a relationship between weather conditions and aortic dissection?

    Get PDF
    BACKGROUND: Bleeding and rupture of blood vessels has been correlated with weather conditions in the past. This is the first study in the world literature with the aim of investigating the relationship between atmospheric pressure and temperature with the presentation of aortic dissection. METHODS: The dates of all emergency aortic dissection repairs from 1996–2002 in a regional cardiothoracic unit at Blackpool Victoria Hospital were obtained. Hourly temperature and pressure data from a regional weather station for this time period was supplied by the Meteorological Office. The mean and standard deviation of hourly temperature and pressure data for that month were compared to the mean and standard deviation of the data 24 and 48 hours prior to the aortic dissection. RESULTS: 26 patients were found to have been operated on during the time period studied. There was no statistically significant correlation between temperature or atmospheric pressure readings, and the incidence of aortic dissection, using a Bonferonni-corrected significance p-value of 0.005 CONCLUSION: This study is the first to examine the relationship between atmospheric pressure, temperature and dissecting thoracic aorta. No statistically significant relationship was demonstrable

    Microvascular engineering in perfusion culture: immunohistochemistry and CLSM findings

    Get PDF
    BACKGROUND: One of the most challenging problems in tissue engineering is the establishment of vascular supply. A possible approach might be the engineering of microvasculature in vitro and the supply by engineered feeder vessels. METHODS: An in vitro model for a small-diameter vessel was developed and made from adipose tissue stromal cells and human umbilical vein endothelial cells in a tube-like gelatine scaffold. The number of "branches" emerging from the central lumen and the morphology of the central lumen of the vessel equivalent were assessed after 16 days of either pulsatile perfusion culture or culture in rotating containers by evaluation of immunohistochemically stained sections (n = 6 pairs of cultures). Intramural capillary network formation was demonstrated in five experiments with confocal laser scanning microscopy. RESULTS: Perfused specimens showed a round or oval lumen lined by a single layer of endothelial cells, whereas following rotation culture the lumen tended to collapse. Confocal laser scanning microscopy showed more extended network formation in perfused specimens as compared to specimens after rotation culture. Partially highly interconected capillary-like networks were imaged which showed orientation around the central lumen. Perfused specimens exhibited significantly more branches emerging from the central lumen. There were, however, hardly any capillary branches crossing the whole vessel wall. CONCLUSION: Pulsatile perfusion supports the development of vascular networks with physiological appearance. Advances in reactor development, acquisition of functional data and imaging procedures are however necessary in order to attain the ultimate goal of a fully functional engineered supplying vessel

    Comparison of flow characteristics and vascular reactivity of radial artery and long saphenous vein grafts [NCT00139399]

    Get PDF
    BACKGROUND: The morphological and functional differences between arteries and veins may have implications on coronary artery bypass graft (CABG) survival. Although subjective differences have been observed between radial artery (RA) and long saphenous venous (LSV) grafts, these have not been quantified. This study assessed and compared the flow characteristics and in-vivo graft flow responses of RA and LSV aorto-coronary grafts. METHODS: Angiograms from 52 males taken 3.7 ± 1.0 months after CABG surgery were analyzed using adjusted Thrombolysis in Myocardial Infarction (TIMI) frame count. Graft and target coronary artery dimensions were measured using quantitative coronary angiography. Estimated TIMI velocity (V(E)) and volume flow (F(E)) were then calculated. A further 7 patients underwent in-vivo graft flow responses assessments to adenosine, acetylcholine and isosorbide dinitrate (ISDN) using intravascular Doppler. RESULTS: The V(E )for RA grafts was significantly greater than LSV grafts (P = 0.002), however there was no difference in volume F(E )(P = 0.20). RA grafts showed positive endothelium-dependent and -independent vasodilatation, and LSV grafts showed no statistically significant response to adenosine and acetylcholine. There was no difference in flow velocity or volume responses. Seven RA grafts (11%) had compromised patency (4 (6%) ≥ 50% stenosis in the proximal/distal anastomoses, and 3 (5%) diffuse narrowing). Thirty-seven (95%) LSV grafts achieved perfect patency and 2 (5%) were occluded. CONCLUSION: The flow characteristics and flow responses of the RA graft suggest that it is a more physiological conduit than the LSV graft. The clinical relevance of the balance between imperfect patency versus the more physiological vascular function in the RA graft may be revealed by the 5-year angiographic follow-up of this trial

    Shear Stress Modulation of Smooth Muscle Cell Marker Genes in 2-D and 3-D Depends on Mechanotransduction by Heparan Sulfate Proteoglycans and ERK1/2

    Get PDF
    During vascular injury, vascular smooth muscle cells (SMCs) and fibroblasts/myofibroblasts (FBs/MFBs) are exposed to altered luminal blood flow or transmural interstitial flow. We investigate the effects of these two types of fluid flows on the phenotypes of SMCs and MFBs and the underlying mechanotransduction mechanisms.Exposure to 8 dyn/cm(2) laminar flow shear stress (2-dimensional, 2-D) for 15 h significantly reduced expression of alpha-smooth muscle actin (alpha-SMA), smooth muscle protein 22 (SM22), SM myosin heavy chain (SM-MHC), smoothelin, and calponin. Cells suspended in collagen gels were exposed to interstitial flow (1 cmH(2)O, approximately 0.05 dyn/cm(2), 3-D), and after 6 h of exposure, expression of SM-MHC, smoothelin, and calponin were significantly reduced, while expression of alpha-SMA and SM22 were markedly enhanced. PD98059 (an ERK1/2 inhibitor) and heparinase III (an enzyme to cleave heparan sulfate) significantly blocked the effects of laminar flow on gene expression, and also reversed the effects of interstitial flow on SM-MHC, smoothelin, and calponin, but enhanced interstitial flow-induced expression of alpha-SMA and SM22. SMCs and MFBs have similar responses to fluid flow. Silencing ERK1/2 completely blocked the effects of both laminar flow and interstitial flow on SMC marker gene expression. Western blotting showed that both types of flows induced ERK1/2 activation that was inhibited by disruption of heparan sulfate proteoglycans (HSPGs).The results suggest that HSPG-mediated ERK1/2 activation is an important mechanotransduction pathway modulating SMC marker gene expression when SMCs and MFBs are exposed to flow. Fluid flow may be involved in vascular remodeling and lesion formation by affecting phenotypes of vascular wall cells. This study has implications in understanding the flow-related mechanobiology in vascular lesion formation, tumor cell invasion, and stem cell differentiation

    The study of art and its influence on the education of surgeons

    No full text
    Il lavoro evidenzia l'importanza dello studio dell'arte nella preparazione dei chirurgh

    Progression of carotid atherosclerosis in Japanese patients with coronary artery disease.

    No full text
    • …
    corecore