194 research outputs found

    Overview of the Alliance for Cellular Signaling

    Full text link
    The Alliance for Cellular Signaling is a large-scale collaboration designed to answer global questions about signalling networks. Pathways will be studied intensively in two cells-B lymphocytes (the cells of the immune system) and cardiac myocytes-to facilitate quantitative modelling. One goal is to catalyse complementary research in individual laboratories; to facilitate this, all alliance data are freely available for use by the entire research community.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62977/1/nature01304.pd

    G-protein signaling: back to the future

    Get PDF
    Heterotrimeric G-proteins are intracellular partners of G-protein-coupled receptors (GPCRs). GPCRs act on inactive Gα·GDP/Gβγ heterotrimers to promote GDP release and GTP binding, resulting in liberation of Gα from Gβγ. Gα·GTP and Gβγ target effectors including adenylyl cyclases, phospholipases and ion channels. Signaling is terminated by intrinsic GTPase activity of Gα and heterotrimer reformation — a cycle accelerated by ‘regulators of G-protein signaling’ (RGS proteins). Recent studies have identified several unconventional G-protein signaling pathways that diverge from this standard model. Whereas phospholipase C (PLC) β is activated by Gαq and Gβγ, novel PLC isoforms are regulated by both heterotrimeric and Ras-superfamily G-proteins. An Arabidopsis protein has been discovered containing both GPCR and RGS domains within the same protein. Most surprisingly, a receptor-independent Gα nucleotide cycle that regulates cell division has been delineated in both Caenorhabditis elegans and Drosophila melanogaster. Here, we revisit classical heterotrimeric G-protein signaling and explore these new, non-canonical G-protein signaling pathways

    Subcellular distributions of calcium/calmodulin-stimulated and guanine nucleotide-regulated adenylate cyclase activities in the cerebral cortex

    Full text link
    The subcellular distribution of Ca 2+ /calmodulin-stimulated adenylate cyclase activity was studied in comparison with that of guanine nucleotide-stimulated cyclase activity. The distributions of these activities were similar among the crude fractions but differed among the purified subsynaptosomal fractions. The specific activity of Ca 2+ /calmodulin-stimulated cyclase was highest in a light synaptic membrane fraction, which has few, if any, postsynaptic densities, whereas that of guanine nucleotide-stimulated cyclase was highest in a heavier synaptic membrane fraction rich in postsynaptic densities. These results suggest that the Ca 2+ /calmodulin-stimulated cyclase has, at least in part, a different cellular or subcellular location than the guanine nucleotide-stimulated cyclase.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/45402/1/11064_2004_Article_BF00965018.pd

    Aluminum: a requirement for activation of the regulatory component of adenylate cyclase by fluoride.

    No full text
    • …
    corecore