986 research outputs found
Regulation of cAMP responses by the G12/13 pathway converges on adenylyl cyclase VII
Regulation of intracellular cyclic adenosine 3’, 5’-monophosphate (cAMP) by multiple pathways enables differential function of this ubiquitous second messenger in a context dependent manner. Modulation of Gs-stimulated intracellular cAMP has long been known to be modulated by the Gi and Gq/Ca2+ pathways. Recently, the G13 pathway was also shown to facilitate cAMP responses in murine macrophage cells. We report here that this synergistic regulation of cAMP synthesis by the Gs and G13 pathways is mediated by a specific isoform of adenylyl cyclase, AC7. Furthermore, this signaling paradigm exists in several hematopoietic lineages and can be recapitulated by exogenous expression of AC7 in HEK 293 cells. Mechanistic characterization of this synergistic interaction indicates that it occurs downstream of receptor activation and it can be mediated by the alpha subunit of either G12 or G13. Our results demonstrate that AC7 is a specific downstream effector of the G12/13 pathway
Use of a cAMP BRET Sensor to Characterize a Novel Regulation of cAMP by the Sphingosine 1-Phosphate/G13 Pathway
Regulation of intracellular cyclic adenosine 3',5'-monophosphate (cAMP) is integral in mediating cell growth, cell differentiation, and immune responses in hematopoietic cells. To facilitate studies of cAMP regulation we developed a BRET (bioluminescence resonance energy transfer) sensor for cAMP, CAMYEL (cAMP sensor using YFP-Epac-RLuc), which can quantitatively and rapidly monitor intracellular concentrations of cAMP in vivo. This sensor was used to characterize three distinct pathways for modulation of cAMP synthesis stimulated by presumed Gs-dependent receptors for isoproterenol and prostaglandin E2. Whereas two ligands, uridine 5'-diphosphate and complement C5a, appear to use known mechanisms for augmentation of cAMP via Gq/calcium and Gi, the action of sphingosine 1-phosphate (S1P) is novel. In these cells, S1P, a biologically active lysophospholipid, greatly enhances increases in intracellular cAMP triggered by the ligands for Gs-coupled receptors while having only a minimal effect by itself. The enhancement of cAMP by S1P is resistant to pertussis toxin and independent of intracellular calcium. Studies with RNAi and chemical perturbations demonstrate that the effect of S1P is mediated by the S1P2 receptor and the heterotrimeric G13 protein. Thus in these macrophage cells, all four major classes of G proteins can regulate intracellular cAMP
Deciphering Signaling Outcomes from a System of Complex Networks
Cellular signal transduction machinery integrates information from multiple inputs to actuate discrete cellular behaviors. Interaction complexity exists when an input modulates the output behavior that results from other inputs. To address whether this machinery is iteratively complex—that is, whether increasing numbers of inputs produce exponential increases in discrete cellular behaviors—we examined the modulated secretion of six cytokines from macrophages in response to up to five-way combinations of an agonist of Toll-like receptor 4, three cytokines, and conditions that activated the cyclic adenosine monophosphate pathway. Although all of the selected ligands showed synergy in paired combinations, few examples of nonadditive outputs were found in response to higher-order combinations. This suggests that most potential interactions are not realized and that unique cellular responses are limited to discrete subsets of ligands and pathways that enhance specific cellular functions
Heterotrimeric Go protein links Wnt-Frizzled signaling with ankyrins to regulate the neuronal microtubule cytoskeleton.
Drosophila neuromuscular junctions (NMJs) represent a powerful model system with which to study glutamatergic synapse formation and remodeling. Several proteins have been implicated in these processes, including components of canonical Wingless (Drosophila Wnt1) signaling and the giant isoforms of the membrane-cytoskeleton linker Ankyrin 2, but possible interconnections and cooperation between these proteins were unknown. Here, we demonstrate that the heterotrimeric G protein Go functions as a transducer of Wingless-Frizzled 2 signaling in the synapse. We identify Ankyrin 2 as a target of Go signaling required for NMJ formation. Moreover, the Go-ankyrin interaction is conserved in the mammalian neurite outgrowth pathway. Without ankyrins, a major switch in the Go-induced neuronal cytoskeleton program is observed, from microtubule-dependent neurite outgrowth to actin-dependent lamellopodial induction. These findings describe a novel mechanism regulating the microtubule cytoskeleton in the nervous system. Our work in Drosophila and mammalian cells suggests that this mechanism might be generally applicable in nervous system development and function
The role of GαO-mediated signaling in the rostral ventrolateral medulla oblongata in cardiovascular reflexes and control of cardiac ventricular excitability.
The heart is controlled by the sympathetic and parasympathetic limbs of the autonomic nervous system with inhibitory signaling mechanisms recruited in both limbs. The aim of this study was to determine the role of inhibitory heterotrimeric G proteins in the central nervous mechanisms underlying autonomic control of the heart and its potential role in arrhythmogenesis. Mice with conditional deletion of the inhibitory heterotrimeric G protein GαO in the presympathetic area of the rostral ventral lateral medulla (RVLM) were generated to determine the role of GαO-mediated signalling in autonomic control and electrophysiological properties of the heart. GαO deletion within the RVLM was not associated with changes in heart rate (HR) or the arterial blood pressure at rest (home cage, normal behavior). However, exposure to stressful conditions (novel environment, hypoxia, or hypercapnia) in these mice was associated with abnormal HR responses and an increased baroreflex gain when assessed under urethane anesthesia. This was associated with shortening of the ventricular effective refractory period. This phenotype was reversed by systemic beta-adrenoceptor blockade, suggesting that GαO depletion in the RVLM increases central sympathetic drive. The data obtained support the hypothesis that GαO-mediated signaling within the presympathetic circuits of the RVLM contributes to the autonomic control of the heart. GαO deficiency in the RVLM has a significant impact on cardiovascular responses to stress, cardiovascular reflexes and electrical properties of the heart.This research was supported by the Medical
Research Council (MRC Clinical Research
Training Fellowship to RA), British Heart
Foundation (Ref: RG/14/4/30736), Wellcome
Trust (Wellcome Trust Senior Research
Fellowship to AVG; Ref: 095064), and by the
Intramural Research Program of the National
Institutes of Health, National Institute of
Environmental Health Sciences (Project Z01-
ES-101643 to LB). This work was facilitated
by the National Institute for Health Research
Barts Cardiovascular Biomedical Research
Unit
- …
