5 research outputs found

    Paper Session III-B - Overview of the Orbiting Radio Communications Asset (ORCA) Mission

    Get PDF
    The Orbiting Radio Communications Asset (ORCA) mission is a commercial mission being designed, built and conducted by the Iowa Space Grant Consortium, supported by Rockwell Collins, and Space Industries. The mission will utilize advanced technology digital radio equipment provided by Rockwell to survey the low-earth orbit radio spectrum. This survey is of interest to both the commercial communications industry and to the scientific radio astronomy community. In addition to the survey, the spacecraft will provide an on-orbit transmit and receive test platform for advanced communications technologies that can be fully reprogrammed from the control station. A significant feature of the ORCA mission is the intimate involvement of students from Drake University, the University of Iowa, the University of Northern Iowa, and Iowa State University. These students will be involved in all aspects of the mission design, development, and staff the operations center after the initial mission

    Overview of the Orbiting Radio Communications Asset (ORCA) Mission

    Get PDF
    The Orbiting Radio Communications Asset (ORCA) mission is a commercial mission being designed and built by neoStar Astronautics in cooperation with the Iowa Space Grant Consortium and Rockwell Collins. The mission will utilize advanced technology digital radio equipment provided by Rockwell to survey the low Earth orbit radio spectrum. This survey is of interest to both the commercial communications industry and to the scientific radio astronomy community. In addition to the survey, the spacecraft will provide an on-orbit transmit and receive test platform for advanced communications technologies that can be fully reprogrammed from the control station. A significant feature of the ORCA mission is the involvement of students from the Iowa Space Grant Consortium in all aspects of the mission design, development, and operations

    Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation

    No full text
    Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes

    Induction of Endogenous Antimicrobial Peptides to Prevent or Treat Oral Infection and Inflammation

    No full text
    Antibiotics are often used to treat oral infections. Unfortunately, excessive antibiotic use can adversely alter oral microbiomes and promote the development of antibiotic-resistant microorganisms, which can be difficult to treat. An alternate approach could be to induce the local transcription and expression of endogenous oral antimicrobial peptides (AMPs). To assess the feasibility and benefits of this approach, we conducted literature searches to identify (i) the AMPs expressed in the oral cavity; (ii) the methods used to induce endogenous AMP expression; and (iii) the roles that expressed AMPs may have in regulating oral inflammation, immunity, healing, and pain. Search results identified human neutrophil peptides (HNP), human beta defensins (HBD), and cathelicidin AMP (CAMP) gene product LL-37 as prominent AMPs expressed by oral cells and tissues. HNP, HBD, and LL-37 expression can be induced by micronutrients (trace elements, elements, and vitamins), nutrients, macronutrients (mono-, di-, and polysaccharides, amino acids, pyropeptides, proteins, and fatty acids), proinflammatory agonists, thyroid hormones, and exposure to ultraviolet (UV) irradiation, red light, or near infrared radiation (NIR). Localized AMP expression can help reduce infection, inflammation, and pain and help oral tissues heal. The use of a specific inducer depends upon the overall objective. Inducing the expression of AMPs through beneficial foods would be suitable for long-term health protection. Additionally, the specialized metabolites or concentrated extracts that are utilized as dosage forms would maintain the oral and intestinal microbiome composition and control oral and intestinal infections. Inducing AMP expression using irradiation methodologies would be applicable to a specific oral treatment area in addition to controlling local infections while regulating inflammatory and healing processes

    Antimicrobial Peptides and Biomarkers Induced by Ultraviolet Irradiation Have the Potential to Reduce Endodontic Inflammation and Facilitate Tissue Healing

    No full text
    Background: Ultraviolet (UV) irradiation can modulate host immune responses and this approach is a novel application for treating endodontic infections and inflammation in root canals. Methods: A dataset of UV-induced molecules was compiled from a literature search. A subset of this dataset was used to calculate expression log2 ratios of endodontic tissue molecules from HEPM cells and gingival fibroblasts after 255, 405, and 255/405 nm UV irradiation. Both datasets were analyzed using ingenuity pathway analysis (IPA, Qiagen, Germantown, MD, USA). Statistical significance was calculated using Fisher’s exact test and z-scores were calculated for IPA comparison analysis. Results: The dataset of 32 UV-induced molecules contained 9 antimicrobial peptides, 10 cytokines, 6 growth factors, 3 enzymes, 2 transmembrane receptors, and 2 transcription regulators. These molecules were in the IPA canonical pathway annotations for the wound healing signaling pathway (9/32, p = 3.22 × 10−11) and communication between immune cells (6/32, p = 8.74 × 10−11). In the IPA disease and function annotations, the 32 molecules were associated with an antimicrobial response, cell-to-cell signaling and interaction, cellular movement, hematological system development and function, immune cell trafficking, and inflammatory response. In IPA comparison analysis of the 13 molecules, the predicted activation or inhibition of pathways depended upon the cell type exposed, the wavelength of the UV irradiation used, and the time after exposure. Conclusions: UV irradiation activates and inhibits cellular pathways and immune functions. These results suggested that UV irradiation can activate innate and adaptive immune responses, which may supplement endodontic procedures to reduce infection, inflammation, and pain and assist tissues to heal
    corecore