11 research outputs found

    Visualizing alpha-synuclein and iron deposition in M83 mouse model of Parkinson's disease in vivo

    Full text link
    BACKGROUND Abnormal alpha-synuclein and iron accumulation in the brain play an important role in Parkinson's disease (PD). Herein, we aim at visualizing alpha-synuclein inclusions and iron deposition in the brains of M83 (A53T) mouse models of PD in vivo . METHODS Fluorescently labelled pyrimidoindole-derivative THK-565 was characterized by using recombinant fibrils and brains from 10-11 months old M83 mice, which subsequently underwent in vivo concurrent wide-field fluorescence and volumetric multispectral optoacoustic tomography (vMSOT) imaging. The in vivo results were verified against structural and susceptibility weighted imaging (SWI) magnetic resonance imaging (MRI) at 9.4 Tesla and scanning transmission X-ray microscopy (STXM) of perfused brains. Brain slice immunofluorescence and Prussian blue staining were further performed to validate the detection of alpha-synuclein inclusions and iron deposition in the brain, respectively. RESULTS THK-565 showed increased fluorescence upon binding to recombinant alpha-synuclein fibrils and alpha-synuclein inclusions in post-mortem brain slices from patients with Parkinson's disease and M83 mice. i.v. administration of THK-565 in M83 mice showed higher cerebral retention at 20 and 40 minutes post-injection by wide-field fluorescence compared to non-transgenic littermate mice, in congruence with the vMSOT findings. SWI/phase images and Prussian blue indicated the accumulation of iron deposits in the brains of M83 mice, presumably in the Fe 3+^{3+} form, as evinced by the STXM results. CONCLUSION We demonstrated in vivo mapping of alpha-synuclein by means of non-invasive epifluorescence and vMSOT imaging assisted with a targeted THK-565 label and SWI/STXM identification of iron deposits in M83 mouse brains ex vivo

    The Aggregation Conditions Define Whether EGCG is an Inhibitor or Enhancer of α-Synuclein Amyloid Fibril Formation

    No full text
    The amyloid fibril formation by α -synuclein is a hallmark of various neurodegenerative disorders, most notably Parkinson’s disease. Epigallocatechin gallate (EGCG) has been reported to be an efficient inhibitor of amyloid formation by numerous proteins, among them α -synuclein. Here, we show that this applies only to a small region of the relevant parameter space, in particular to solution conditions where EGCG readily oxidizes, and we find that the oxidation product is a much more potent inhibitor compared to the unmodified EGCG. In addition to its inhibitory effects, EGCG and its oxidation products can under some conditions even accelerate α -synuclein amyloid fibril formation through facilitating its heterogeneous primary nucleation. Furthermore, we show through quantitative seeding experiments that, contrary to previous reports, EGCG is not able to re-model α -synuclein amyloid fibrils into seeding-incompetent structures. Taken together, our results paint a complex picture of EGCG as a compound that can under some conditions inhibit the amyloid fibril formation of α -synuclein, but the inhibitory action is not robust against various physiologically relevant changes in experimental conditions. Our results are important for the development of strategies to identify and characterize promising amyloid inhibitors

    The environment is a key factor in determining the anti-amyloid efficacy of EGCG

    No full text
    Millions of people around the world suffer from amyloid-related disorders, including Alzheimer's and Parkinson's diseases. Despite significant and sustained efforts, there are still no disease-modifying drugs available for the majority of amyloid-related disorders, and the overall failure rate in clinical trials is very high, even for compounds that show promising anti-amyloid activity in vitro. In this study, we demonstrate that even small changes in the chemical environment can strongly modulate the inhibitory effects of anti-amyloid compounds. Using one of the best-established amyloid inhibitory compounds, epigallocatechin-3-gallate (EGCG), as an example, and two amyloid-forming proteins, insulin and Parkinson's disease-related α -synuclein, we shed light on the previously unexplored sensitivity to solution conditions of the action of this compound on amyloid fibril formation. In the case of insulin, we show that the classification of EGCG as an amyloid inhibitor depends on the experimental conditions select, on the method used for the evaluation of the efficacy, and on whether or not EGCG is allowed to oxidise before the experiment. For α -synuclein, we show that a small change in pH value, from 7 to 6, transforms EGCG from an efficient inhibitor to completely ineffective, and we were able to explain this behaviour by the increased stability of EGCG against oxidation at pH 6

    Rationally designed helical peptidomimetics disrupt α-synuclein fibrillation

    No full text
    Misfolding of the human protein alpha-synuclein results in toxic fibrils and the aggregation of Lewy bodies, which are a hallmark of Parkinson’s disease in brain tissue. Here we disclose a supramolecular approach where peptidomimetics are rationally designed and pre-organised to recognize the surface of native helical, pre-fibrillar, alpha-Syn by forming complementary contacts with key patches of protein surface composed of charged and hydrophobic residues. Under lipid-catalyzed conditions the mimetics slow the rate of aggregation (thioflavin-T assay) and disrupt the misfolding pathway (electron microscopy of aggregates). This hypothesis is supported by comparison with a series of negative control compounds and with circular dichroism experiments. Given the approach relies on selective recognition of both amino acid sequence and conformation (helical secondary structure) there is potential to develop these compounds as tools to unravel the currently intractable structure-function relationships of (i) missense mutation, and (ii) amyloid polymorphism with disease pathogenesis

    Biochemical and biophysical characterisation of immunoglobulin free light chains derived from an initially unbiased population of patients wit h light chain disease

    Get PDF
    In light chain (LC) diseases, monoclonal immunoglobulin LCs are abundantly produced with the consequence in some cases to form deposits of a fibrillar or amorphous nature affecting various organs, such as heart and kidney. The factors that determine the solubility of any given LC in vivo are still not well understood. We hypothesize that some of the biochemical properties of the LCs that have been shown to correlate with amyloid fibril formation in patients also can be used as predictors for the degree of kidney damage in a patient group that is only biased by protein availability. We performed detailed biochemical and biophysical investigations of light chains extracted and purified from the urine of a group of 20 patients with light chain disease. For all samples that contained a sufficiently high concentration of LC, we quantified the unfolding temperature of the LCs, the monomer-dimer distribution, the digestibility by trypsin and the formation of amyloid fibrils under various conditions of pH and reducing agent. We correlated the results of our biophysical and biochemical experiments with the degree of kidney damage in the patient group and found that most of these parameters do not correlate with kidney damage as defined by clinical parameters. However, the patients with the greatest impairment of kidney function have light chains which display very poor digestibility by trypsin. Most of the LC properties reported before to be predictors of amyloid formation cannot be used to assess the degree of kidney damage. Our finding that poor trypsin digestibility correlates with kidney damage warrants further investigation in order to probe a putative mechanistic link between these factors

    De Novo Sequencing of Antibody Light Chain Proteoforms from Patients with Multiple Myeloma

    No full text
    International audienceIn multiple myeloma diseases, monoclonal immunoglobulin light chains (LCs) are abundantly produced, with, as a consequence in some cases, the formation of deposits affecting various organs, such as the kidney, while in other cases remaining soluble up to concentrations of several g•L −1 in plasma. The exact factors crucial for the solubility of LCs are poorly understood, but it can be hypothesized that their amino acid sequence plays an important role. Determining the precise sequences of patient-derived LCs is therefore highly desirable. We establish here a novel de novo sequencing workflow for patient-derived LCs, based on the combination of bottom-up and top-down proteomics without database search. PEAKS is used for the de novo sequencing of peptides that are further assembled into full length LC sequences using ALPS. Top-down proteomics provides the molecular masses of proteoforms and allows the exact determination of the amino acid sequence including all posttranslational modifications. This pipeline is then used for the complete de novo sequencing of LCs extracted from the urine of 10 patients with multiple myeloma. We show that for the bottom-up part, digestions with trypsin and Nepenthes digestive fluid are sufficient to produce overlapping peptides able to generate the best sequence candidates. Top-down proteomics is absolutely required to achieve 100% final sequence coverage and characterize clinical samples containing several LCs. Our work highlights an unexpected range of modifications

    De Novo Sequencing of Antibody Light Chain Proteoforms from Patients with Multiple Myeloma

    No full text
    In multiple myeloma diseases, monoclonal immunoglobulin light chains (LC) are abundantly produced, with the consequence in some cases to form deposits affecting various organs, such as kidney, while in other cases to remain soluble up to concentrations of several g.L-1 in plasma. The exact factors crucial for the solubility of light chains are poorly understood, but it can be hypothesized that their amino acid sequence plays an important role. Determining the precise sequences of patient-derived light chains is therefore highly desirable. We establish here a novel de novo sequencing workflow for patient-derived LCs, based on the combination of bottom-up and top-down proteomics without database search. This pipeline is then used for the complete de novo sequencing of LCs extracted from the urine of 10 patients with multiple myeloma. We show that for the bottom-up part, digestions with trypsin and Nepenthes fluid extract are sufficient to produce overlapping peptides able to generate the best sequence candidates. For the sequencing of intact LC proteoforms, combining activation methods is key to achieve single amino acid resolution.</p

    Widespread amyloidogenicity potential of multiple myeloma patient-derived immunoglobulin light chains

    No full text
    International audienceBackgroundIn a range of human disorders such as multiple myeloma (MM), immunoglobulin light chains (IgLCs) can be produced at very high concentrations. This can lead to pathological aggregation and deposition of IgLCs in different tissues, which in turn leads to severe and potentially fatal organ damage. However, IgLCs can also be highly soluble and non-toxic. It is generally thought that the cause for this differential solubility behaviour is solely found within the IgLC amino acid sequences, and a variety of individual sequence-related biophysical properties (e.g. thermal stability, dimerisation) have been proposed in different studies as major determinants of the aggregation in vivo. Here, we investigate biophysical properties underlying IgLC amyloidogenicity.ResultsWe introduce a novel and systematic workflow, Thermodynamic and Aggregation Fingerprinting (ThAgg-Fip), for detailed biophysical characterisation, and apply it to nine different MM patient-derived IgLCs. Our set of pathogenic IgLCs spans the entire range of values in those parameters previously proposed to define in vivo amyloidogenicity; however, none actually forms amyloid in patients. Even more surprisingly, we were able to show that all our IgLCs are able to form amyloid fibrils readily in vitro under the influence of proteolytic cleavage by co-purified cathepsins.ConclusionsWe show that (I) in vivo aggregation behaviour is unlikely to be mechanistically linked to any single biophysical or biochemical parameter and (II) amyloidogenic potential is widespread in IgLC sequences and is not confined to those sequences that form amyloid fibrils in patients. Our findings suggest that protein sequence, environmental conditions and presence and action of proteases all determine the ability of light chains to form amyloid fibrils in patients
    corecore