1,276 research outputs found
Sexually dimorphic and sex-independent left-right asymmetries in chicken embryonic gonads
Female birds develop asymmetric gonads: a functional ovary develops on the left, whereas the right gonad regresses. In males, however, testes develop on both sides. We examined the distribution of germ cells using Vasa/Cvh as a marker. Expression is asymmetric in both sexes: at stage 35 the left gonad contains significantly more germ cells than the right. A similar expression pattern is seen for expression of ERNI (Ens1), a gene expressed in chick embryonic stem cells while they self-renew, but downregulated upon differentiation. Other pluripotency-associated markers (PouV/Oct3/4, Nanog and Sox2) also show asymmetric expression (more expressing cells on the left) in both sexes, but this asymmetry is at least partly due to expression in stromal cells of the developing gonad, and the pattern is different for all the genes. Therefore germ cell and pluripotency-associated genes show both sex-dependent and independent left-right asymmetry and a complex pattern of expression
A molecular mechanism of symmetry breaking in the early chick embryo
The first obvious sign of bilateral symmetry in mammalian and avian embryos is the appearance of the primitive streak in the future posterior region of a radially symmetric disc. The primitive streak marks the midline of the future embryo. The mechanisms responsible for positioning the primitive streak remain largely unknown. Here we combine experimental embryology and mathematical modelling to analyse the role of the TGFβ-related molecules BMP4 and Vg1/GDF1 in positioning the primitive streak. Bmp4 and Vg1 are first expressed throughout the embryo, and then become localised to the future anterior and posterior regions of the embryo, where they will, respectively, inhibit or induce formation of the primitive streak. We propose a model based on paracrine signalling to account for the separation of the two domains starting from a homogeneous array of cells, and thus for the topological transformation of a radially symmetric disc to a bilaterally symmetric embryo
A resegmentation-shift model for vertebral patterning
Segmentation of the vertebrate body axis is established in the embryo by formation of somites, which give rise to the axial muscles (myotome) and vertebrae (sclerotome). To allow a muscle to attach to two successive vertebrae, the myotome and sclerotome must be repositioned by half a segment with respect to each other. Two main models have been put forward: 'resegmentation' proposes that each half-sclerotome joins with the half-sclerotome from the next adjacent somite to form a vertebra containing cells from two successive somites on each side of the midline. The second model postulates that a single vertebra is made from a single somite and that the sclerotome shifts with respect to the myotome. There is conflicting evidence for these models, and the possibility that the mechanism may vary along the vertebral column has not been considered. Here we use DiI and DiO to trace somite contributions to the vertebrae in different axial regions in the chick embryo. We demonstrate that vertebral bodies and neural arches form by resegmentation but that sclerotome cells shift in a region-specific manner according to their dorsoventral position within a segment. We propose a 'resegmentation-shift' model as the mechanism for amniote vertebral patterning
The role of the notochord in amniote vertebral column segmentation
The vertebral column is segmented, comprising an alternating series of vertebrae and intervertebral discs along the head-tail axis. The vertebrae and outer portion (annulus fibrosus) of the disc are derived from the sclerotome part of the somites, whereas the inner nucleus pulposus of the disc is derived from the notochord. Here we investigate the role of the notochord in vertebral patterning through a series of microsurgical experiments in chick embryos. Ablation of the notochord causes loss of segmentation of vertebrae and discs. However, the notochord cannot segment in the absence of the surrounding sclerotome. To test whether the notochord dictates sclerotome segmentation, we grafted an ectopic notochord. We find that the intrinsic segmentation of the sclerotome is dominant over any segmental information the notochord may possess, and no evidence that the chick notochord is intrinsically segmented. We propose that the segmental pattern of vertebral bodies and discs in chick is dictated by the sclerotome, which first signals to the notochord to ensure that the nucleus pulposus develops in register with the somite-derived annulus fibrosus. Later, the notochord is required for maintenance of sclerotome segmentation as the mature vertebral bodies and intervertebral discs form. These results highlight differences in vertebral development between amniotes and zebrafish and some other teleosts, where the notochord dictates the segmental pattern. The relative importance of the sclerotome and notochord in vertebral patterning has changed significantly during evolution
Calreticulin is a secreted BMP antagonist, expressed in Hensen's node during neural induction
Hensen's node is the “organizer” of the avian and mammalian early embryo. It has many functions, including neural induction and patterning of the ectoderm and mesoderm. Some of the signals responsible for these activities are known but these do not explain the full complexity of organizer activity. Here we undertake a functional screen to discover new secreted factors expressed by the node at this time of development. Using a Signal Sequence Trap in yeast, we identify several candidates. Here we focus on Calreticulin. We show that in addition to its known functions in intracellular Calcium regulation and protein folding, Calreticulin is secreted, it can bind to BMP4 and act as a BMP antagonist in vivo and in vitro. Calreticulin is not sufficient to account for all organizer functions but may contribute to the complexity of its activity
Responding empathically : a question of heart, not a question of skin
Empathy entails the capacities to resonate with another person’s emotions, understand his/her thoughts and feelings, separate our own thoughts and emotions from those of the observed and responding with the appropriate prosocial and helpful behavior. While there is abundant research on the neurobiological mechanisms of some components of empathy (e.g., emotional contagion), few studies have considered the neurobiological mechanisms underlying the empathic response. The present study explores psychophysiological correlates (skin conductance level and the interbeat interval) as a function of the empathic response while participants watch and respond to actors portraying emotionally laden vignettes. Forty undergraduate psychology students were each presented with 40 emotional vignettes of positive or negative valence and asked to choose among three different empathic responses while their electrodermal and cardiac responses were measured. Overall, the study shows that higher levels of additive empathy are associated with increased cardiac activity (i.e., decreased Interbeat Interval) but not electrodermal activity.BIAL
Foundation by the grant ‘‘The Neuropsychophysiological Basis of
Empathy: The role of neuroendocrine; autonomic and central nervous
system variables (89/08)’’ that supported this research
Cellular aspects of somite formation in vertebrates
Vertebrate segmentation, the process that generates a regular arrangement of somites and thereby establishes the pattern of the adult body and of the musculoskeletal and peripheral nervous systems, was noticed many centuries ago. In the last few decades, there has been renewed interest in the process and especially in the molecular mechanisms that might account for its regularity and other spatial-temporal properties. Several models have been proposed but surprisingly, most of these do not provide clear links between the molecular mechanisms and the cell behaviours that generate the segmental pattern. Here we present a short survey of our current knowledge about the cellular aspects of vertebrate segmentation and the similarities and differences between different vertebrate groups in how they achieve their metameric pattern. Taking these variations into account should help to assess each of the models more appropriately
Staging tables for avian embryos: a little history
Absolute time elapsed since fertilization, or hours’ incubation, is not a good measure of the precise degree of development of an embryo because there is considerable variation. The chick embryo benefits from a detailed, well defined staging system introduced by Hamburger and Hamilton in 1951, perhaps the most precise and detailed available for any species. This paper briefly reviews the background and legacy of this table, including the remarkable work of its predecessors, Mathias Duval and Franz Keibel. It also begs the question of why the mouse embryo still lacks a similarly precise classification
The chick model system: a distinguished past and a great future
When I was asked by the Chief Editor of the Int. J. Dev. Biol. to consider editing a Special Issue about “the chick”, I was first hesitant, because I had already edited such an issue for another journal in 2004 (Mech. Dev. volume 121), when the sequence of the chick genome was first released (Stern, 2004, 2005). But at the same time I was surprised that this journal, well known for its Special Issues of which many have become important historical and literary land-marks to the developmental biology literature, had not yet produced a volume on what is probably the oldest developmental model system. Despite this, it is often forgotten that much of what we know (or think we know) about human developmental events is due to extrapolation from chick embryological studies
- …
