15 research outputs found

    Genomic investigations of unexplained acute hepatitis in children

    Get PDF
    Since its first identification in Scotland, over 1,000 cases of unexplained paediatric hepatitis in children have been reported worldwide, including 278 cases in the UK1. Here we report an investigation of 38 cases, 66 age-matched immunocompetent controls and 21 immunocompromised comparator participants, using a combination of genomic, transcriptomic, proteomic and immunohistochemical methods. We detected high levels of adeno-associated virus 2 (AAV2) DNA in the liver, blood, plasma or stool from 27 of 28 cases. We found low levels of adenovirus (HAdV) and human herpesvirus 6B (HHV-6B) in 23 of 31 and 16 of 23, respectively, of the cases tested. By contrast, AAV2 was infrequently detected and at low titre in the blood or the liver from control children with HAdV, even when profoundly immunosuppressed. AAV2, HAdV and HHV-6 phylogeny excluded the emergence of novel strains in cases. Histological analyses of explanted livers showed enrichment for T cells and B lineage cells. Proteomic comparison of liver tissue from cases and healthy controls identified increased expression of HLA class 2, immunoglobulin variable regions and complement proteins. HAdV and AAV2 proteins were not detected in the livers. Instead, we identified AAV2 DNA complexes reflecting both HAdV-mediated and HHV-6B-mediated replication. We hypothesize that high levels of abnormal AAV2 replication products aided by HAdV and, in severe cases, HHV-6B may have triggered immune-mediated hepatic disease in genetically and immunologically predisposed children

    Autophagy and Metabolism in Normal and Malignant Hematopoiesis

    No full text
    The hematopoietic system relies on regulation of both metabolism and autophagy to maintain its homeostasis, ensuring the self-renewal and multipotent differentiation potential of hematopoietic stem cells (HSCs). HSCs display a distinct metabolic profile from that of their differentiated progeny, while metabolic rewiring from glycolysis to oxidative phosphorylation (OXPHOS) has been shown to be crucial for effective hematopoietic differentiation. Autophagy-mediated regulation of metabolism modulates the distinct characteristics of quiescent and differentiating hematopoietic cells. In particular, mitophagy determines the cellular mitochondrial content, thus modifying the level of OXPHOS at the different differentiation stages of hematopoietic cells, while, at the same time, it ensures the building blocks and energy for differentiation. Aberrations in both the metabolic status and regulation of the autophagic machinery are implicated in the development of hematologic malignancies, especially in leukemogenesis. In this review, we aim to investigate the role of metabolism and autophagy, as well as their interconnections, in normal and malignant hematopoiesis

    Pathogenetic Mechanisms Implicated in Sjögren’s Syndrome Lymphomagenesis: A Review of the Literature

    No full text
    Sjögren’s Syndrome (SS) is a chronic autoimmune disorder characterized by focal mononuclear cell infiltrates that surround the ducts of the exocrine glands, impairing the function of their secretory units. Compared to other autoimmune disorders, SS is associated with a notably high incidence of non-Hodgkin lymphoma (NHL) and more frequently mucosa associated lymphoid tissue (MALT) lymphoma, leading to increased morbidity and mortality rates. High risk features of lymphoma development include systemic extraepithelial manifestations, low serum levels of complement component C4 and mixed type II cryoglobulinemia. The discrimination between reactive and neoplastic lymphoepithelial lesion (LEL) is challenging, probably reflecting a continuum in the evolution from purely inflammatory lymphoid infiltration to the clonal neoplastic evolution. Early lesions display a predominance of activated T cells, while B cells prevail in severe histologic lesions. This strong B cell infiltration is not only a morphologic phenomenon, but it is also progressively associated with the presence of ectopic germinal centers (GCs). Ectopic formation of GCs in SS represents a complex process regulated by an array of cytokines, adhesion molecules and chemokines. Chronic antigenic stimulation is the major driver of specific B cell proliferation and increases the frequency of their transformation in the ectopic GCs and marginal zone (MZ) equivalents. B cells expressing cell surface rheumatoid factor (RF) are frequently detected in the salivary glands, suggesting that clonal expansion might arise from antigen selection of RF-expressing B cells. Abnormal stimulation and incomplete control mechanisms within ectopic lymphoid structures predispose RF MZ like cells to lymphoma development. Immunoglobulin recombination, somatic mutation and isotype switching during B cell development are events that may increase the translocation of oncogenes to immunoglobulin loci or tumor suppressor gene inactivation, leading to monoclonal B cell proliferation and lymphoma development. Concerning chronic antigenic stimulation, conclusive data is so far lacking. However immune complexes containing DNA or RNA are the most likely candidates. Whether additional molecular oncogenic events contribute to the malignant overgrowth remains to be proved

    Predisposing Factors, Clinical Picture, and Outcome of B-Cell Non-Hodgkin’s Lymphoma in Sjögren’s Syndrome

    No full text
    Among other systemic autoimmune diseases, primary Sjögren syndrome (pSS) bears the highest risk for lymphoma development. In pSS, chronic antigenic stimulation gradually drives the evolution from polyclonal B-cell expansion to oligoclonal/monoclonal B-cell predominance to malignant B-cell transformation. Thus, most pSS-related lymphomas are B-cell non-Hodgkin lymphomas (NHLs), with mucosa-associated lymphoid tissue (MALT) lymphomas predominating, followed by diffuse large B-cell lymphomas (DLBCLs) and nodal marginal zone lymphomas (NMZLs). Since lymphomagenesis is one of the most serious complications of pSS, affecting patients’ survival, a plethora of possible predisposing factors has been studied over the years, ranging from classical clinical, serological, hematological, and histological, to the more recently proposed genetic and molecular, allowing clinicians to timely detect and to closely follow-up the subgroup of pSS patients with increased risk for lymphoma development. Overall predisposing factors for pSS-related lymphomagenesis reflect the status of B-cell hyperactivity. Different clinical features have been described for each of the distinct pSS-related B-cell NHL subtypes. While generally pSS patients developing B-cell NHLs display a fairly good prognosis, outcomes in terms of treatment response and survival rates seem to differ depending on the lymphoma subtype, with MALT lymphomas being characterized by a rather indolent course and DLBCLs gravely affecting patients’ survival

    Predisposing Factors, Clinical Picture, and Outcome of B-Cell Non-Hodgkin’s Lymphoma in Sjögren’s Syndrome

    No full text
    Among other systemic autoimmune diseases, primary Sjögren syndrome (pSS) bears the highest risk for lymphoma development. In pSS, chronic antigenic stimulation gradually drives the evolution from polyclonal B-cell expansion to oligoclonal/monoclonal B-cell predominance to malignant B-cell transformation. Thus, most pSS-related lymphomas are B-cell non-Hodgkin lymphomas (NHLs), with mucosa-associated lymphoid tissue (MALT) lymphomas predominating, followed by diffuse large B-cell lymphomas (DLBCLs) and nodal marginal zone lymphomas (NMZLs). Since lymphomagenesis is one of the most serious complications of pSS, affecting patients’ survival, a plethora of possible predisposing factors has been studied over the years, ranging from classical clinical, serological, hematological, and histological, to the more recently proposed genetic and molecular, allowing clinicians to timely detect and to closely follow-up the subgroup of pSS patients with increased risk for lymphoma development. Overall predisposing factors for pSS-related lymphomagenesis reflect the status of B-cell hyperactivity. Different clinical features have been described for each of the distinct pSS-related B-cell NHL subtypes. While generally pSS patients developing B-cell NHLs display a fairly good prognosis, outcomes in terms of treatment response and survival rates seem to differ depending on the lymphoma subtype, with MALT lymphomas being characterized by a rather indolent course and DLBCLs gravely affecting patients’ survival

    Unraveling the Role of the NLRP3 Inflammasome in Lymphoma: Implications in Pathogenesis and Therapeutic Strategies

    No full text
    Inflammasomes are multimeric protein complexes, sensors of intracellular danger signals, and crucial components of the innate immune system, with the NLRP3 inflammasome being the best characterized among them. The increasing scientific interest in the mechanisms interconnecting inflammation and tumorigenesis has led to the study of the NLRP3 inflammasome in the setting of various neoplasms. Despite a plethora of data regarding solid tumors, NLRP3 inflammasome’s implication in the pathogenesis of hematological malignancies only recently gained attention. In this review, we investigate its role in normal lymphopoiesis and lymphomagenesis. Considering that lymphomas comprise a heterogeneous group of hematologic neoplasms, both tumor-promoting and tumor-suppressing properties were attributed to the NLRP3 inflammasome, affecting neoplastic cells and immune cells in the tumor microenvironment. NLRP3 inflammasome-related proteins were associated with disease characteristics, response to treatment, and prognosis. Few studies assess the efficacy of NLRP3 inflammasome therapeutic targeting with encouraging results, though most are still at the preclinical level. Further understanding of the mechanisms regulating NLRP3 inflammasome activation during lymphoma development and progression can contribute to the investigation of novel treatment approaches to cover unmet needs in lymphoma therapeutics

    Akt Signaling Pathway Is Activated in the Minor Salivary Glands of Patients with Primary Sjögren’s Syndrome

    No full text
    Primary Sjögren’s syndrome (pSS) is an autoimmune exocrinopathy of mainly the salivary and lacrimal glands associated with high prevalence of lymphoma. Akt is a phosphoinositide-dependent serine/threonine kinase, controlling numerous pathological processes, including oncogenesis and autoimmunity. Herein, we sought to examine its implication in pSS pathogenesis and related lymphomagenesis. The expression of the entire and activated forms of Akt (partially and fully activated: phosphorylated at threonine-308 (T308) and serine-473 (S473), respectively), and two of its substrates, the proline-rich Akt-substrate of 40 kDa (PRAS40) and FoxO1 transcription factor has been immunohistochemically examined in minor salivary glands (MSG) of pSS patients (n = 29; including 9 with pSS-associated lymphoma) and sicca-complaining controls (sicca-controls; n = 10). The entire and phosphorylated Akt, PRAS40, and FoxO1 molecules were strongly, uniformly expressed in the MSG epithelia and infiltrating mononuclear cells of pSS patients, but not sicca-controls. Morphometric analysis revealed that the staining intensity of the fully activated phospho-Akt-S473 in pSS patients (with or without lymphoma) was significantly higher than sicca-controls. Akt pathway activation was independent from the extent or proximity of infiltrates, as well as other disease features, including lymphoma. Our findings support that the Akt pathway is specifically activated in MSGs of pSS patients, revealing novel therapeutic targets

    Unveiling the Yin-Yang Balance of M1 and M2 Macrophages in Hepatocellular Carcinoma: Role of Exosomes in Tumor Microenvironment and Immune Modulation

    No full text
    Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate and limited treatment options. Recent research has brought attention to the significant importance of intercellular communication in the progression of HCC, wherein exosomes have been identified as critical agents facilitating cell-to-cell signaling. In this article, we investigate the impact of macrophages as both sources and targets of exosomes in HCC, shedding light on the intricate interplay between exosome-mediated communication and macrophage involvement in HCC pathogenesis. It investigates how exosomes derived from HCC cells and other cell types within the tumor microenvironment (TME) can influence macrophage behavior, polarization, and recruitment. Furthermore, the section explores the reciprocal interactions between macrophage-derived exosomes and HCC cells, stromal cells, and other immune cells, elucidating their role in tumor growth, angiogenesis, metastasis, and immune evasion. The findings presented here contribute to a better understanding of the role of macrophage-derived exosomes in HCC progression and offer new avenues for targeted interventions and improved patient outcomes
    corecore