8 research outputs found

    Thermally assisted interlayer magnetic coupling through Ba0.05Sr0.95TiO3 barriers

    Get PDF
    We report on the interlayer exchange coupling across insulating barriers observed on Ni80Fe20/Ba0.05Sr0.95TiO3/La0.66Sr0.33MnO3 (Py/BST0.05/LSMO) trilayers. The coupling mechanism has been analyzed in terms of the barrier thickness, samples' substrate, and temperature. We examined the effect of MgO (MGO) and SrTiO3 (STO) (001) single-crystalline substrates on the magnetic coupling and also on the magnetic anisotropies of the samples in order to get a deeper understanding of the magnetism of the structures. We measured a weak coupling mediated by spin-dependent tunneling phenomena whose sign and strength depend on barrier thickness and substrate. An antiferromagnetic (AF) exchange prevails for most of the samples and smoothly increases with the barrier thicknesses as a consequence of the screening effects of the BST0.05. The coupling monotonically increases with temperature in all the samples and this behavior is attributed to thermally assisted mechanisms. The magnetic anisotropy of both magnetic components has a cubic symmetry that in the case of permalloy is added to a small uniaxial component.Fil: Carreira, Santiago José. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Aviles Felix, Luis Steven. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Sirena, Martin. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Alejandro, Gabriela. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Steren, Laura Beatriz. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin

    Highly compliant planar Hall effect sensor with sub 200 nT sensitivity

    Get PDF
    Being a facet of flexible electronics, mechanically reshapeable magnetic field sensorics enable novel device ideas for soft robotics, interactive devices for virtual- and augmented reality and point of care diagnostics. These applications demand mechanically compliant yet robust sensor devices revealing high sensitivity to small magnetic fields. To push the detection limit of highly compliant and linear magnetic field sensors to be in the sub-µT range, we explore a new fundamental concept for magnetic field sensing, namely the planar Hall effect in magnetic thin films. With their remarkable bendability down to 1 mm, these compliant planar Hall effect sensors allow for an efficient detection of magnetic fields as small as 200 nT with a limit of detection of 20 nT. We demonstrate the application potential of these devices as a direction (angle) as well as proximity (distance) sensors of tiny magnetic fields emanating from magnetically functionalized objects. With their intrinsic linearity and simplicity of fabrication, these compliant planar Hall effect sensors have the potential to become a standard solution for low field applications of shapeable magnetoelectronics in point of care applications and on-skin interactive electronics.Fil: Granell, Pablo Nicolás. Instituto Nacional de Tecnología Industrial; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Wang, Guoliang. Institute of Ion Beam Physics and Materials Research; AlemaniaFil: Cañon Bermudez, Gilbert Santiago. Institute of Ion Beam Physics and Materials Research; AlemaniaFil: Kosub, Tobias. Institute of Ion Beam Physics and Materials Research; AlemaniaFil: Golmar, Federico. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Steren, Laura Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Fassbender, Jürgen. Institute of Ion Beam Physics and Materials Research; AlemaniaFil: Makarov, Denys. Institute of Ion Beam Physics and Materials Research; Alemani

    Substrate influence on the magnetoresistance and magnetic order in La0.6Sr0.4MnO3 films

    Get PDF
    We report structural, magnetic and transport measurements on La0.6Sr0.4MnO3 thin films grown on MgO and TiSrO3 substrates with thickness varying from 5 to 500 nm. We find that the lattice mismatch between substrates and films affects the morphology and induced-strains of the films. We show that these two different effects strongly influence the ferromagnetic order, the metal-insulator transition, the localization of the current carriers and the magnetoresistance of these materials.Fil: Steren, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Sirena, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Guimpel, Julio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; Argentin

    Substrate effect on the magnetic behavior of manganite films

    Get PDF
    The film thickness (t)(t) dependence of the magnetic properties of La0.6Sr0.4MnO3La0.6Sr0.4MnO3 (LSMO) films grown on (001) MgO and (001) SrTiO3SrTiO3 substrates has been studied. Hysteresis loops measured at low temperature show a smooth increase of the retentivity accompanied by a decrease of the coercitive field as the film thickness increases. The increase of coercitivity with decreasing tt can be interpreted in terms of a change in the domain structure of the films mainly due to an augmentation of domain pinning defects. The magnetic anisotropy has been measured using ferromagnetic resonance (FMR). A volume (VA) and a surface (SA) anisotropy contribution have been deduced from FMR angular dependence studies for both series of samples. In the LSMO films grown on MgO a VA component that corresponds to an easy-axis perpendicular to the plane of the films has been found while in contrast, the LSMO films grown on SrTiO3SrTiO3 present an easy-plane anisotropy. The SA is positive for both series favoring a perpendicular magnetic anisotropy. The measured magnetic anisotropy has been assigned to substrate-induced effects.Fil: Steren, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Sirena, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; ArgentinaFil: Guimpel, Julio Juan. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Gerencia del Área de Energía Nuclear. Instituto Balseiro; Argentin

    Nanoscale structural characterization of manganite thin films integrated to silicon correlated with their magnetic and electric properties

    No full text
    A detailed nanoscale structural characterization was performed on high-quality La0.66Sr0.33MnO3 (LSMO) thin films of different thicknesses and deposited by pulsed laser deposition onto buffered Si (100) substrates. A multilayered structure built of Y0.13Zr0.87O2 (YSZ) and CeO2 layers was used as buffer in order to optimize the manganite films growth. The stacking of the different layers, their morpholohy, composition and strains were analysed using different experimental techniques. In-situ characterization of the films, performed with reflection high-energy electron diffraction, revealed their epitaxial growth and smooth surfaces. High-resolution transmission electron microscopy (HR-TEM) images showed sharp interfaces between the constituents lattices and combined with energy-dispersive X-ray analysis allowed us to determine that there was no ion interdifussion across them. The Fourier-Fast-Transform of the HR-TEM images was used to resolve the epitaxy relationship between the layers, resulting in [100] LSMO (001) ‖ [110] CeO2 (001) ‖ [110] YSZ (001) ‖ [110] Si (001). The LSMO thin films were found to be ferromagnetic and metallic at low temperature regardless their thickness. The effect of strains and defects was only detected in films thinner than 15 nm and put in evidence by X-ray diffraction patterns and correlated with magnetic and electrical parameters.Fil: Carrero Lobo, Aneely Alejandra. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Roman, Augusto. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Aguirre Myriam Haydee. Universidad de Zaragoza. Instituto de Nanociencia de Aragón; EspañaFil: Steren, Laura Beatriz. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentin

    Anisotropic magnetic-field-induced phase transition in MnAs nanoribbons

    Get PDF
    MnAs thin films present a phase coexistence of regularly arranged ferromagnetic (alfa) and paramagnetic (beta) stripes below the Curie temperature when grown onto GaAs(100) substrates. In this letter, we report the observation of a magneto-structural phase transition induced by magnetic field on MnAs nanoribbons below the Curie temperature. A transformation of high-resistance paramagnetic regions into low-resistance ferromagnetic ones is observed above temperature-dependentcritical magnetic fields. The phenomenon is hysteretic, highly anisotropic, and size dependent and could be the origin of the high magneto-resistance effect observed at temperatures close to room temperature in these systems.Fil: Fernandez Baldis, Federico Jose. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Sirena, Martin. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Fundación José A. Balseiro; ArgentinaFil: Steren, Laura Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes; ArgentinaFil: Etgens, V.H.. Universite de Paris Vi. Institut des Nanosciences de Paris; FranciaFil: Eddrief, M.. Universite de Paris Vi. Institut des Nanosciences de Paris; FranciaFil: Ulysse, C.. Centre National de la Recherche Scientifique; FranciaFil: Faini, G.. Centre National de la Recherche Scientifique; Franci

    Strain-induced magnetic transition in CaMn O3 ultrathin films

    Get PDF
    The effect of high tensile strain and low dimensionality on the magnetic and electronic properties of CaMnO3 ultrathin films, epitaxially grown on SrTiO3 substrates, are experimentally studied and theoretically analyzed. By means of ab initio calculations, we find that both the high strain produced by the substrate and the presence of the free surface contribute to the stabilization of an in-plane ferromagnetic coupling, giving rise to a nonzero net magnetic moment in the ultrathin films. Coupled with this change in the magnetic order we find an insulatormetal transition triggered by the quantum confinement and the tensile epitaxial strain. Accordingly, our magnetic measurements in 3-nm ultrathin films show a ferromagnetic hysteresis loop, absent in the bulk compound due to its G-type antiferromagnetic structure.Fil: Lopez Pedroso, Agustin Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Constituyentes; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; ArgentinaFil: Barral, María Andrea. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentina. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; ArgentinaFil: Graf, Mónica Elisabet. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Física de Rosario. Universidad Nacional de Rosario. Instituto de Física de Rosario; ArgentinaFil: Llois, Ana Maria. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Aguirre, M. H.. Consejo Superior de Investigaciones Científicas. Universidad de Zaragoza. Instituto de Nanociencia y Materiales de Aragón; EspañaFil: Steren, Laura Beatriz. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; ArgentinaFil: Di Napoli, Solange Mariel. Comisión Nacional de Energía Atómica. Gerencia de Área Investigaciones y Aplicaciones No Nucleares. Gerencia Física (CAC). Departamento de Física de la Materia Condensada; Argentina. Consejo Nacional de Investigaciones Cientificas y Tecnicas. Oficina de Coordinacion Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes | Comision Nacional de Energia Atomica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia. Unidad Ejecutora Instituto de Nanociencia y Nanotecnologia - Nodo Constituyentes.; Argentin

    BaTiO3 thin films on platinized silicon: Growth, characterization and resistive memory behavior

    No full text
    We report on the fabrication and characterization of Ti/BaTiO3/Pt memristive devices. BaTiO3 films were grown on platinized silicon by pulsed laser deposition with different laser pulse energies. We prove the existence of a correlation between the fabrication conditions and the microstructure and stoichiometry of the films. It is suggested that the small grain size found on our BaTiO3 films destabilizes the structural tetragonal distortion and inhibits the appearance of long-range ferroelectric ordering. We show that even in absence of ferroelectric resistive switching (RS), two different RS mechanisms (metallic filament formation and oxidation/reduction of the Ti top electrode) compete, and can be selected by controlling the films stoichiometry and microstructure.Fil: Roman Acevedo, Wilson Stibens. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; ArgentinaFil: Rengifo Morocho, Miguel Andrés. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; ArgentinaFil: Saleh Medina, Leila María. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Química Inorgánica, Analítica y Química Física; ArgentinaFil: Reinoso, Maria Elba. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; ArgentinaFil: Negri, Ricardo Martin. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; ArgentinaFil: Steren, Laura Beatriz. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Rubi, Diego. Universidad Nacional de San Martín. Escuela de Ciencia y Tecnología; Argentina. Comisión Nacional de Energía Atómica. Centro Atómico Constituyentes. Gerencia de Investigación y Aplicaciones; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentin
    corecore