3,740 research outputs found
Destruction and regrowth of lithospheric mantle beneath large igneous provinces
Large igneous provinces (LIPs) are formed by enormous (i.e., frequently >106 km3) but short-lived magmatic events that have profound effects upon global geodynamic, tectonic, and environmental processes. Lithospheric structure is known to modulate mantle melting, yet its evolution during and after such dramatic periods of magmatism is poorly constrained. Using geochemical and seismological observations, we find that magmatism is associated with thin (i.e., ≲80 km) lithosphere and we reveal a striking positive correlation between the thickness of modern-day lithosphere beneath LIPs and time since eruption. Oceanic lithosphere rethickens to 125 km, while continental regions reach >190 km. Our results point to systematic destruction and subsequent regrowth of lithospheric mantle during and after LIP emplacement and recratonization of the continents following eruption. These insights have implications for the stability, age, and composition of ancient, thick, and chemically distinct lithospheric roots, the distribution of economic resources, and emissions of chemical species that force catastrophic environmental change
A Gravitational Instability-Driven Viscosity in Self-Gravitating Accretion Disks
We derive a viscosity from gravitational instability in self-gravitating
accretion disks, which has the required properties to account for the observed
fast formation of the first super-massive black holes in highly redshifted
quasars and for the cosmological evolution of the black hole-mass distribution.Comment: 14 pages, 1 figure, ApJ Letters (in press
Measurement of the analyzing power in pp elastic scattering in the peak CNI region at RHIC
We report the first measurements of the A_N absolute value and shape in the
-t range from 0.0015 to 0.010GeV/c^2 with a precision better than 0.005 for
each A_N data point using a polarized atomic hydrogen gas jet target and the
100 GeV RHIC proton beam.Comment: 4 pages, 5 figure
To what distances do we know the confining potential?
We argue that asymptotically linear static potential is built in into the
common procedure of extracting it from lattice Wilson loop measurements. To
illustrate the point, we extract the potential by the standard lattice method
in a model vacuum made of instantons. A beautiful infinitely rising linear
potential is obtained in the case where the true potential is actually
flattening. We argue that the flux tube formation might be also an artifact of
the lattice procedure and not necessarily a measured physical effect.
We conclude that at present the rising potential is known for sure up to no
more than about 0.7 fm. It may explain why no screening has been clearly
observed so far for adjoint sources and for fundamental sources but with
dynamical fermions.
Finally, we speculate on how confinement could be achieved even if the static
potential in the pure glue theory is not infinitely rising.Comment: 16 pages, 5 figures. Additional arguments presented, a new figure and
references adde
Vortex-induced topological transition of the bilinear-biquadratic Heisenberg antiferromagnet on the triangular lattice
The ordering of the classical Heisenberg antiferromagnet on the triangular
lattice with the the bilinear-biquadratic interaction is studied by Monte Carlo
simulations. It is shown that the model exhibits a topological phase transition
at a finite-temperature driven by topologically stable vortices, while the spin
correlation length remains finite even at and below the transition point. The
relevant vortices could be of three different types, depending on the value of
the biquadratic coupling. Implications to recent experiments on the triangular
antiferromagnet NiGaS is discussed
Radio Spectral Index and Expansion of 3C58
We present new observations of the plerionic supernova remnant 3C58 with the
VLA at 74 and 327 MHz. In addition, we re-reduced earlier observations at 1.4
and 4.9 GHz taken in 1973 and 1984. Comparing these various images, we find
that: 1. the remnant has a flat and relatively uniform spectral index
distribution, 2. any expansion of the remnant with time is significantly less
than that expected for uniform, undecelerated expansion since the generally
accepted explosion date in 1181 A.D., and 3. there is no evidence for a
non-thermal synchrotron emission shell generated by a supernova shock wave,
with any such emission having a surface brightness of <1 x 10^(-21) W / (m^2 Hz
sr) at 327 MHz.Comment: 18 pages, 7 Figures, Latex, Accepted for publication in the
Astrophysical Journa
Patterns of Natural and Human-Caused Mortality Factors of a Rare Forest Carnivore, the Fisher (Pekania pennanti) in California.
Wildlife populations of conservation concern are limited in distribution, population size and persistence by various factors, including mortality. The fisher (Pekania pennanti), a North American mid-sized carnivore whose range in the western Pacific United States has retracted considerably in the past century, was proposed for threatened status protection in late 2014 under the United States Endangered Species Act by the United States Fish and Wildlife Service in its West Coast Distinct Population Segment. We investigated mortality in 167 fishers from two genetically and geographically distinct sub-populations in California within this West Coast Distinct Population Segment using a combination of gross necropsy, histology, toxicology and molecular methods. Overall, predation (70%), natural disease (16%), toxicant poisoning (10%) and, less commonly, vehicular strike (2%) and other anthropogenic causes (2%) were causes of mortality observed. We documented both an increase in mortality to (57% increase) and exposure (6%) from pesticides in fishers in just the past three years, highlighting further that toxicants from marijuana cultivation still pose a threat. Additionally, exposure to multiple rodenticides significantly increased the likelihood of mortality from rodenticide poisoning. Poisoning was significantly more common in male than female fishers and was 7 times more likely than disease to kill males. Based on necropsy findings, suspected causes of mortality based on field evidence alone tended to underestimate the frequency of disease-related mortalities. This study is the first comprehensive investigation of mortality causes of fishers and provides essential information to assist in the conservation of this species
Modular Invariance of Finite Size Corrections and a Vortex Critical Phase
We analyze a continuous spin Gaussian model on a toroidal triangular lattice
with periods and where the spins carry a representation of the
fundamental group of the torus labeled by phases and . We find the
{\it exact finite size and lattice corrections}, to the partition function ,
for arbitrary mass and phases . Summing over phases gives
the corresponding result for the Ising model. The limits and
do not commute. With the model exhibits a {\it vortex
critical phase} when at least one of the is non-zero. In the continuum or
scaling limit, for arbitrary , the finite size corrections to are
{\it modular invariant} and for the critical phase are given by elliptic theta
functions. In the cylinder limit the ``cylinder charge''
is a non-monotonic function of that ranges from
for to zero for .Comment: 12 pages of Plain TeX with two postscript figure insertions called
torusfg1.ps and torusfg2.ps which can be obtained upon request from
[email protected]
- …