4,488 research outputs found

    Non-equilibrium Relaxation Study of Ferromagnetic Transition in Double-Exchange Systems

    Full text link
    Ferromagnetic transition in double-exchange systems is studied by non-equilibrium relaxation technique combined with Monte Carlo calculations. Critical temperature and critical exponents are estimated from relaxation of the magnetic moment. The results are consistent with the previous Monte Carlo results in thermal equilibrium. The exponents estimated by these independent techniques suggest that the universality class of this transition is the same as that of short-range interaction models but is different from the mean-field one.Comment: 3 pages including 1 figure, submitted to J. Phys. Soc. Jp

    Frustrated quantum Heisenberg ferrimagnetic chains

    Full text link
    We study the ground-state properties of weakly frustrated Heisenberg ferrimagnetic chains with nearest and next-nearest neighbor antiferromagnetic exchange interactions and two types of alternating sublattice spins S_1 > S_2, using 1/S spin-wave expansions, density-matrix renormalization group, and exact- diagonalization techniques. It is argued that the zero-point spin fluctuations completely destroy the classical commensurate- incommensurate continuous transition. Instead, the long-range ferrimagnetic state disappears through a discontinuous transition to a singlet state at a larger value of the frustration parameter. In the ferrimagnetic phase we find a disorder point marking the onset of incommensurate real-space short-range spin-spin correlations.Comment: 16 pages (LaTex 2.09), 6 eps figure

    A Model for the Analysis of Caries Occurrence in Primary Molar Tooth Surfaces

    Get PDF
    Recently methods of caries quantification in the primary dentition have moved away from summary ‘whole mouth’ measures at the individual level to methods based on generalised linear modelling (GLM) approaches or survival analysis approaches. However, GLM approaches based on logistic transformation fail to take into account the time-dependent process of tooth/surface survival to caries. There may also be practical difficulties associated with casting parametric survival-based approaches in a complex multilevel hierarchy and the selection of an optimal survival distribution, while non-parametric survival methods are not generally suitable for the assessment of supplementary information recorded on study participants. In the current investigation, a hybrid semi-parametric approach comprising elements of survival-based and GLM methodologies suitable for modelling of caries occurrence within fixed time periods is assessed, using an illustrative multilevel data set of caries occurrence in primary molars from a cohort study, with clustering of data assumed to occur at surface and tooth levels. Inferences of parameter significance were found to be consistent with previous parametric survival-based analyses of the same data set, with gender, socio-economic status, fluoridation status, tooth location, surface type and fluoridation status-surface type interaction significantly associated with caries occurrence. The appropriateness of the hierarchical structure facilitated by the hybrid approach was also confirmed. Hence the hybrid approach is proposed as a more appropriate alternative to primary caries modelling than non-parametric survival methods or other GLM-based models, and as a practical alternative to more rigorous survival-based methods unlikely to be fully accessible to most researchers

    A Gravitational Instability-Driven Viscosity in Self-Gravitating Accretion Disks

    Get PDF
    We derive a viscosity from gravitational instability in self-gravitating accretion disks, which has the required properties to account for the observed fast formation of the first super-massive black holes in highly redshifted quasars and for the cosmological evolution of the black hole-mass distribution.Comment: 14 pages, 1 figure, ApJ Letters (in press

    Stable dynamics in forced systems with sufficiently high/low forcing frequency

    Get PDF
    We consider a class of parametrically forced Hamiltonian systems with one-and-a-half degrees of freedom and study the stability of the dynamics when the frequency of the forcing is relatively high or low. We show that, provided the frequency of the forcing is sufficiently high, KAM theorem may be applied even when the forcing amplitude is far away from the perturbation regime. A similar result is obtained for sufficiently low frequency forcing, but in that case we need the amplitude of the forcing to be not too large; however we are still able to consider amplitudes of the forcing which are outside of the perturbation regime. Our results are illustrated by means of numerical simulations for the system of a forced cubic oscillator. In addition, we find numerically that the dynamics are stable even when the forcing amplitude is very large (beyond the range of validity of the analytical results), provided the frequency of the forcing is taken correspondingly low.Comment: 12 pages, 3 figures, 2 table

    Measurement of the analyzing power in pp elastic scattering in the peak CNI region at RHIC

    Get PDF
    We report the first measurements of the A_N absolute value and shape in the -t range from 0.0015 to 0.010GeV/c^2 with a precision better than 0.005 for each A_N data point using a polarized atomic hydrogen gas jet target and the 100 GeV RHIC proton beam.Comment: 4 pages, 5 figure

    Frustrated spin model as a hard-sphere liquid

    Get PDF
    We show that one-dimensional topological objects (kinks) are natural degrees of freedom for an antiferromagnetic Ising model on a triangular lattice. Its ground states and the coexistence of spin ordering with an extensive zero-temperature entropy can be easily understood in terms of kinks forming a hard-sphere liquid. Using this picture we explain effects of quantum spin dynamics on that frustrated model, which we also study numerically.Comment: 5 pages, 3 figure

    Cluster variation method and disorder varieties of two-dimensional Ising-like models

    Full text link
    I show that the cluster variation method, long used as a powerful hierarchy of approximations for discrete (Ising-like) two-dimensional lattice models, yields exact results on the disorder varieties which appear when competitive interactions are put into these models. I consider, as an example, the plaquette approximation of the cluster variation method for the square lattice Ising model with nearest-neighbor, next-nearest-neighbor and plaquette interactions, and, after rederiving known results, report simple closed-form expressions for the pair and plaquette correlation functions.Comment: 10 revtex pages, 1 postscript figur
    • …
    corecore