9 research outputs found

    Genetic Analysis ofRAB39Bin an Early-Onset Parkinson's Disease Cohort

    Get PDF
    Pathogenic variants in the gene encoding RAB39B, resulting in the loss of protein function, lead to the development of X-linked early-onset parkinsonism. The gene is located within a chromosomal region that is susceptible to genomic rearrangement, and while an increased dosage of RAB39B was previously associated with cognitive impairment, the potential role of dosage alterations in Parkinson's disease (PD) remains to be determined. This study aimed to investigate the contribution of the genetic variation in RAB39B to the development of early-onset PD. We performed gene dosage studies and sequence analysis in a cohort of 176 individuals with early-onset PD (age of onset ≤ 50 years) of unknown genetic etiology. An assessment of the copy number variation over both coding exons and the 3' untranslated region (UTR) of RAB39B did not identify any alterations in gene dosage. An analysis of the UTRs identified two male individuals carrying single, likely benign, nucleotide variants in the 3'UTR (chrX:154489749-A-G and chrX:154489197-T-G). Furthermore, one novel variant of uncertain significance was identified in the 5'UTR, 229 bp upstream of the start codon (chrX:154493802-C-T). In silico analyses predicted that this variant disrupts a highly conserved transcription factor binding site and could impact RAB39B expression. The results of this study do not support a significant role for genetic variation in RAB39B as contributing to early-onset PD but do highlight that additional molecular studies are required to determine the mechanisms regulating RAB39B expression and their association with the disease. Genetic investigations in larger parkinsonism/PD cohorts and longitudinal studies of individuals with cognitive impairment due to an altered dosage of RAB39B will be required to fully delineate the contribution of RAB39B to parkinsonism

    Generation and characterisation of a parkin-Pacrg knockout mouse line and a Pacrg knockout mouse line

    Get PDF
    Mutations in PARK2 (parkin) can result in Parkinson's disease (PD). Parkin shares a bidirectional promoter with parkin coregulated gene (PACRG) and the transcriptional start sites are separated by only ~200 bp. Bidirectionally regulated genes have been shown to function in common biological pathways. Mice lacking parkin have largely failed to recapitulate the dopaminergic neuronal loss and movement impairments seen in individuals with parkin-mediated PD. We aimed to investigate the function of PACRG and test the hypothesis that parkin and PACRG function in a common pathway by generating and characterizing two novel knockout mouse lines harbouring loss of both parkin and Pacrg or Pacrg alone. Successful modification of the targeted allele was confirmed at the genomic, transcriptional and steady state protein levels for both genes. At 18-20 months of age, there were no significant differences in the behaviour of parental and mutant lines when assessed by openfield, rotarod and balance beam. Subsequent neuropathological examination suggested there was no gross abnormality of the dopaminergic system in the substantia nigra and no significant difference in the number of dopaminergic neurons in either knockout model compared to wildtype mice

    Gradient of brain mosaic RHEB variants causes a continuum of cortical dysplasia

    Get PDF
    Focal cortical dysplasia (FCD) and hemimegalencephaly (HME) are related malformations with shared etiologies. We report three patients with a spectrum of cortical malformations associated with pathogenic brain-specific somatic Ras homolog enriched in brain (RHEB) variants. The somatic variant load directly correlated with the size of the malformation, with upregulated mTOR activity confirmed in dysplastic tissues. Laser capture microdissection showed enrichment of RHEB variants in dysmorphic neurons and balloon cells. Our findings support the role of RHEB in a spectrum of cortical malformations confirming that FCD and HME represent a disease continuum, with the extent of dysplastic brain directly correlated with the somatic variant load

    Second-hit DEPDC5 mutation is limited to dysmorphic neurons in cortical dysplasia type IIA

    Get PDF
    Focal cortical dysplasia (FCD) causes drug-resistant epilepsy and is associated with pathogenic variants in mTOR pathway genes. How germline variants cause these focal lesions is unclear, however a germline + somatic "2-hit" model is hypothesized. In a boy with drug-resistant epilepsy, FCD, and a germline DEPDC5 pathogenic variant, we show that a second-hit DEPDC5 variant is limited to dysmorphic neurons, and the somatic mutation load correlates with both dysmorphic neuron density and the epileptogenic zone. These findings provide new insights into the molecular and cellular correlates of FCD determining drug-resistant epilepsy and refine conceptualization of the epileptogenic zone

    An open-label trial in Friedreich ataxia suggests clinical benefit with high-dose resveratrol, without effect on frataxin levels

    No full text
    Friedreich ataxia (FRDA) is due to a triplet repeat expansion in FXN, resulting in deficiency of the mitochondrial protein frataxin. Resveratrol is a naturally occurring polyphenol, identified to increase frataxin expression in cellular and mouse models of FRDA and has anti-oxidant properties. This open-label, non-randomized trial evaluated the effect of two different doses of resveratrol on peripheral blood mononuclear cell (PBMC) frataxin levels over a 12-week period in individuals with FRDA. Secondary outcome measures included PMBC FXN mRNA, oxidative stress markers, and clinical measures of disease severity. Safety and tolerability were studied. Twenty-four participants completed the study; 12 received low-dose resveratrol (1 g daily) and 12 high-dose resveratrol (5 g daily). PBMC frataxin levels did not change in either dosage group [low-dose group change: 0.08 pg/μg protein (95% CI -0.05, 0.21, p = 0.21); high-dose group change: 0.03 pg/μg protein (95% CI -0.10, 0.15, p = 0.62)]. Improvement in neurologic function was evident in the high-dose group [change in Friedreich Ataxia Rating Scale -3.4 points, 95% CI (-6.6, -0.3), p = 0.036], but not the low-dose group. Significant improvements in audiologic and speech measures, and in the oxidative stress marker plasma F2-isoprostane were demonstrated in the high-dose group only. There were no improvements in cardiac measures or patient-reported outcome measures. No serious adverse events were recorded. Gastrointestinal side-effects were a common, dose-related adverse event. This open-label study shows no effect of resveratrol on frataxin levels in FRDA, but suggests that independent positive clinical and biologic effects of high-dose resveratrol may exist. Further assessment of efficacy is warranted in a randomized placebo-controlled trial

    Callosal agenesis and congenital mirror movements: outcomes associated with DCC mutations

    Get PDF
    Pathogenic variants in the gene encoding deleted in colorectal cancer (DCC) are the first genetic cause of isolated agenesis of the corpus callosum (ACC). Here we present the detailed neurological, brain magnetic resonance imaging (MRI), and neuropsychological characteristics of 12 individuals from three families with pathogenic variants in DCC (aged 8-50y), who showed ACC and mirror movements (n=5), mirror movements only (n=2), ACC only (n=3), or neither ACC nor mirror movements (n=2). There was heterogeneity in the neurological and neuroimaging features on brain MRI, and performance across neuropsychological domains ranged from extremely low (impaired) to within normal limits (average). Our findings show that ACC and/or mirror movements are associated with low functioning in select neuropsychological domains and a DCC pathogenic variant alone is not sufficient to explain the disability

    An overview of structural equation modeling: its beginnings, historical development, usefulness and controversies in the social sciences

    No full text
    corecore