15,558 research outputs found
Advanced high temperature materials for the energy efficient automotive Stirling engine
The Stirling Engine is under investigated jointly by the Department of Energy and NASA Lewis as an alternative to the internal combustion engine for automotive applications. The Stirling Engine is an external combustion engine that offers the advantage of high fuel economy, low emissions, low noise, and low vibrations compared to current internal combustion automotive engines. The most critical component from a materials viewpoint is the heater head consisting of the cylinders, heating tubes, and regenerator housing. Materials requirements for the heater head include compatibility with hydrogen, resistance to hydrogen permeation, high temperature oxidation/corrosion resistance and high temperature creep-rupture and fatigue properties. A continuing supporting materials research and technology program has identified the wrought alloys CG-27 and 12RN72 and the cast alloys XF-818 and NASAUT 4G-A1 as candidate replacements for the cobalt containing alloys used in current prototype engines. Based on the materials research program in support of the automotive Stirling engine it is concluded that manufacture of the engine is feasible from low cost iron-base alloys rather than the cobalt alloys rather than the cobalt alloys used in prototype engines. This paper will present results of research that led to this conclusion
Why Two Renormalization Groups are Better than One
The advantages of using more than one renormalization group (RG) in problems
with more than one important length scale are discussed. It is shown that: i)
using different RG's can lead to complementary information, i.e. what is very
difficult to calculate with an RG based on one flow parameter may be much more
accessible using another; ii) using more than one RG requires less physical
input in order to describe via RG methods the theory as a function of its
parameters; iii) using more than one RG allows one to solve problems with more
than one diverging length scale. The above points are illustrated concretely in
the context of both particle physics and statistical physics using the
techniques of environmentally friendly renormalization. Specifically, finite
temperature theory, an Ising-type system in a film geometry, an
Ising-type system in a transverse magnetic field, the QCD coupling constant at
finite temperature and the crossover between bulk and surface critical
behaviour in a semi-infinite geometry are considered.Comment: 17 pages LaTex; to be published in the Proceedings of RG '96, Dubn
Sonic-boom research: Selected bibliography with annotation
Citations of selected documents are included which represent the state of the art of technology in each of the following subject areas: prediction, measurement, and minimization of steady-flight sonic booms; prediction and measurement of accelerating-flight sonic booms; sonic-boom propagation; the effects of sonic booms on people, communities, structures, animals, birds, and terrain; and sonic-boom simulator technology. Documents are listed in chronological order in each section of the paper, with key documents and associated annotation listed first. The sources are given along with acquisition numbers, when available, to expedite the acquisition of copies of the documents
Trends in Langley helicopter noise research
A broad perspective of needs in helicopter exterior and interior control is presented. Emphasis is given to those items which support noise certification of civil helicopters and which result in reduced environmental noise impact to community residents as well as to helicopter passengers. The activities described are related to the Langley responsibilities for helicopter acoustics as defined by NASA roles and missions
Weldability of high-toughness iron - 12 percent-nickel alloys with reactive metal additions of titanium, aluminum, or niobium
Three exceptionally high toughness Fe-12Ni alloys designed for cryogenic service were welded by using the gas tungsten arc welding process. Evaluation of their weldability included equivalent energy fracture toughness tests, transverse weld tensile tests at -196 and 25 C, and weld crack sensitivity tests. The Fe-12Ni-0.25Ti alloy proved extremely weldable for cryogenic applications, having weld and heat affected zone properties comparable to those of the wrought base alloy. The Fe-12Ni-0.5Al alloy had good weld properties only after the weld joint was heat treated. The Fe-12Ni-0.25Nb alloy was not considered weldable for cryogenic use because of its poor weld joint properties at -196 C and its susceptibility to hot cracking
Vibrational state dependence of ionic rotational branching ratios in resonance enhanced multiphoton ionization of CH
We show that rapid evolution of a Rydberg orbital with internuclear distance in a resonance enhanced multiphoton ionization (REMPI) process can have a profound influence on the production of molecular ions in alternative rotational states. This is illustrated by calculations of ionic rotational branching ratios for (2+1′) REMPI via the O11 (20.5) branch of the E′ ^2Σ^+(3pσ) Rydberg state of CH. The rotational propensity rule for ionization changes from ΔN=odd (ΔN=N_+−N_i) at lower vibrational excitation, as expected from the ΔN+l=odd selection rule, to ΔN=even at higher vibrational levels. This effect is expected to be quite general and should be most readily observable in diatomic hydrides
- …