5 research outputs found

    International capacity building to achieve SDG6 : insights from longitudinal analysis of five water operator partnerships

    Get PDF
    In pursuit of the United Nationsā€™ Sustainable Development Goal (SDG) 6, water operator partnerships (WOPs) have grown in popularity. However, the literature supporting their effectiveness is lacking. We conducted mid-term interviews and surveys with five participating utilities in a Viet Namā€“Australia WOP, followed by post-programme interviews with two managing associations and 10 utilities. We found that while partnerships initially focused on technical training, the need for broader institutional learning emerged as participants gained experience. Communication and relationship-building were consistently reported as success factors for achieving desired outcomes. Expanding the scope to involve governance and policy organizations, together with funding to collaboratively implement upgrades, could enhance future programmes

    Which rainfall errors can hydrologic models handle? : implications for using satellite-derived products in sparsely gauged catchments

    No full text
    There is interest in applying satellite-derived rainfall products for water management in data-sparse areas. However, questions remain around how uncertainties in different products interact with hydrologic models to determine simulation skill. Most related work uses performance statistics that inherently combine rainfall magnitude, timing and persistence, making it unclear which product improvements should be prioritized. We applied six satellite-derived rainfall products in a conceptual hydrologic model (GR4J) across four Australian catchments with dense gauge data for comparison. We found that GR4J's inherent flexibility allowed it to filter errors in rainfall magnitude and variance through parameterization. Therefore, when rainfall observations for bias correction are unavailable, calibration of a flexible model could prove a useful alternative. However, the model was less able to compensate for errors in rainfall occurrence. In fact, the Probability of Detection score explained 59% of the variance in calibration performance (26% for validation), while overall bias explained just 14% (8% for validation). All products underestimated rainfall state persistence, but this had less influence on model skill. We then removed gauges from the observed data set to mimic data sparsity, finding that even a few gauges could reproduce rainfall occurrence and outperform satellite-derived products. Two data-sparse catchments in Vietnam were modeled to check whether the same learnings applied. The gauge data also performed best in Vietnam, and performance of most satellite-derived products was comparable to the Australian case. Efforts to increase the spatial and temporal resolution of satellite observations, which could improve rainfall detection, will enhance satellite-derived precipitation for hydrologic modeling

    Spatial variation in catchment response to climate change depends on lateral moisture transport and nutrient dynamics

    No full text
    Future shifts in rainfall, temperature and carbon dioxide (CO2) will impact hydrologic and ecosystem behavior. These changes are expected to vary in space because water and nutrient availability vary with terrain and soil properties, with feedbacks on vegetation and canopy adjustment. However, within-basin patterns and spatial dependencies of ecohydrologic dynamics have often been ignored in future scenario modeling. We used a distributed process-based ecohydrologic model, the Regional Hydro-Ecological Simulation System, as a virtual catchment to examine spatial and temporal variability in climate change response. We found spatial heterogeneity in Leaf Area Index, transpiration and soil saturation trends, with some scenarios even showing opposite trends in different locations. For example, in a drying scenario, decreased vegetation productivity in water-limited upslope areas enhanced downslope nutrient subsidies so that productivity increased in the nutrient-limited riparian zone. In scenarios with both warming and rising CO2, amplifying feedbacks between mineralization, vegetation water use efficiency and litter fall led to large increases in growth that were often strongest in the riparian area (depending on the coincident rainfall change). Modeled transpiration trends were determined by the competing effects of vegetation growth and changing water use efficiency. Overall, the riparian zone experienced substantially different (and even opposing) ecohydrologic trends compared to the rest of the catchment, which is important because productive riparian areas often contribute a disproportionate amount of vegetation growth, transpiration and nutrient consumption to catchment totals. Models that are spatially lumped, lack key ecosystem-driving dynamics, or ignore lateral transport could misrepresent the complex ecohydrologic changes catchments could experience in the future

    Is past variability a suitable proxy for future change? : a virtual catchment experiment

    No full text
    To estimate the robustness of hydrologic models under projected future climate change, researchers test transferability between climatically contrasting observed periods. This approach can only assess the performance changes induced by altered precipitation and related environmental dynamics (e.g., greening under wet conditions), since the instrumental record does not contain temperatures or carbon dioxide levels that are similar to future climate change projections. Additionally, there is an inherent assumption that longā€term persistence of changes in precipitation will not further impact catchment response. In this study, we undertake a series of virtual catchment experiments using an ecohydrologic model that simulates dynamic vegetation growth, nutrient cycling, and subsurface hydrology. These experiments explore a number of climate change scenarios. We compare simulations based on persistent altered climate states against simulations designed to represent historical periods with the same precipitation but limited time for ecohydrologic adaptation. We find that persistence of precipitation changes as well as increased temperature and elevated carbon dioxide levels can all substantially impact streamflow under drier future conditions. For wetter future scenarios, simulated differences in the flow regime were smaller, but there was still notable divergence in modeled low flows and other hydrologic variables. The results suggest that historical periods with equivalent precipitation statistics cannot necessarily be used as proxies for future climate change when examining catchment runoff response and/or model performance. The current literature likely underestimates the potential for nonstationarity in hydrologic assessments, especially for drier future scenarios

    Explaining changes in rainfall-runoff relationships during and after Australia's Millennium Drought : a community perspective

    No full text
    The Millennium Drought lasted more than a decade and is notable for causing persistent shifts in the relationship between rainfall and runoff in many southeastern Australian catchments. Research to date has successfully characterised where and when shifts occurred and explored relationships with potential drivers, but a convincing physical explanation for observed changes in catchment behaviour is still lacking. Originating from a large multi-disciplinary workshop, this paper presents and evaluates a range of hypothesised process explanations of flow response to the Millennium Drought. The hypotheses consider climatic forcing, vegetation, soil moisture dynamics, groundwater, and anthropogenic influence. The hypotheses are assessed against evidence both temporally (e.g. why was the Millennium Drought different to previous droughts?) and spatially (e.g. why did rainfall-runoff relationships shift in some catchments but not in others?). Thus, the strength of this work is a large-scale assessment of hydrologic changes and potential drivers. Of 24 hypotheses, 3 are considered plausible, 10 are considered inconsistent with evidence, and 11 are in a category in between, whereby they are plausible yet with reservations (e.g. applicable in some catchments but not others). The results point to the unprecedented length of the drought as the primary climatic driver, paired with interrelated groundwater processes, including declines in groundwater storage, altered recharge associated with vadose zone expansion, and reduced connection between subsurface and surface water processes. Other causes include increased evaporative demand and harvesting of runoff by small private dams. Finally, we discuss the need for long-term field monitoring, particularly targeting internal catchment processes and subsurface dynamics. We recommend continued investment in the understanding of hydrological shifts, particularly given their relevance to water planning under climate variability and change
    corecore