66 research outputs found

    Drosophila Single-minded Represses Gene Transcription by Activating the Expression of Repressive Factors

    Get PDF
    AbstractThe Drosophila single-minded gene controls CNS midline cell development by both activating midline gene expression and repressing lateral CNS gene expression in the midline cells. The mechanism by which Single-minded represses transcription was examined using the ventral nervous system defective gene as a target gene. Transgenic-lacZ analysis of constructs containing fragments of the ventral nervous system defective regulatory region identified sequences required for lateral CNS transcription and midline repression. Elimination of Single-minded:Tango binding sites within the ventral nervous system defective gene did not affect midline repression. Mutants of Single-minded that removed the DNA binding and transcriptional activation regions abolished ventral nervous system defective repression, as well as transcriptional activation of other genes. The replacement of the Single-minded transcriptional activation region with a heterologous VP16 transcriptional activation region restored the ability of Single-minded to both activate and repress transcription. These results indicate that Single-minded indirectly represses transcription by activating the expression of repressive factors. Single-minded provides a model system for how regulatory proteins that act only as transcriptional activators can control lineage-specific transcription in both positive and negative modes

    MidExDB: A database of Drosophila CNS midline cell gene expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The <it>Drosophila </it>CNS midline cells are an excellent model system to study neuronal and glial development because of their diversity of cell types and the relative ease in identifying and studying the function of midline-expressed genes. In situ hybridization experiments generated a large dataset of midline gene expression patterns. To help synthesize these data and make them available to the scientific community, we developed a web-accessible database.</p> <p>Description</p> <p>MidExDB (<it>Drosophila </it>CNS Midline Gene Expression Database) is comprised of images and data from our in situ hybridization experiments that examined midline gene expression. Multiple search tools are available to allow each type of data to be viewed and compared. Descriptions of each midline cell type and their development are included as background information.</p> <p>Conclusion</p> <p>MidExDB integrates large-scale gene expression data with the ability to identify individual cell types providing the foundation for detailed genetic, molecular, and biochemical studies of CNS midline cell neuronal and glial development and function. This information has general relevance for the study of nervous system development in other organisms, and also provides insight into transcriptional regulation.</p

    Transcriptional Specificity of Drosophila Dysfusion and the Control of Tracheal Fusion Cell Gene Expression

    Get PDF
    The Drosophila Dysfusion basic-helix-loop-helix-PAS (bHLH-PAS) protein controls the transcription of genes that mediate tracheal fusion. Dysfusion is highly related to the mammalian Nxf protein that has been implicated in nervous system gene regulation. Toward the goal of understanding how Dysfusion controls fusion cell gene expression, the biochemical properties of Dysfusion were investigated using protein interaction experiments, cell culture-based transcription assays, and in vivo transgenic analyses. Dysfusion dimerizes with the Tango bHLH-PAS protein, and together they act as a DNA binding transcriptional activator. Dysfusion/Tango binds multiple NCGTG binding sites, with the following preference: TCGTG > GCGTG > ACGTG > CCGTG. This binding site promiscuity differs from the restricted binding site preferences of other bHLH-PAS/Tango heterodimers. However, it is identical to the binding site preferences of mammalian Nxf/Arnt, indicating that the specificity is evolutionarily conserved. Germ line transformation experiments using a fragment of the CG13196 Dysfusion target gene allowed identification of a fusion cell enhancer. Experiments in which NCGTG sites were mutated individually and in combination revealed that TCGTG sites were required for fusion cell expression but that the single ACGTG and GCGTG sites present were not. Finally, a reporter transgene containing four tandemly arranged TCGTG elements has strong expression in tracheal fusion cells. Transgenic misexpression of dysfusion further revealed that Dysfusion has the ability to activate transcription in multiple cell types, although it does this most effectively in tracheal cells and can only function at midembryogenesis and later

    The Drosophila Dead end Arf-like3 GTPase controls vesicle trafficking during tracheal fusion cell morphogenesis

    Get PDF
    The Drosophila larval tracheal system consists of a highly branched tubular organ that becomes interconnected by migration-fusion events during embryonic development. Fusion cells at the tip of each branch guide migration, adhere, and then undergo extensive remodeling as the tracheal lumen extends between the two branches. The Drosophila dead end gene is expressed in fusion cells, and encodes an Arf-like3 GTPase. Analyses of dead end RNAi and mutant embryos reveals that the lumen fails to connect between the two branches. Expression of a constitutively active form of Dead end in S2 cells reveal that it influences the state of actin polymerization, and is present on particles that traffic along actin/microtubule-containing processes. Imaging experiments in vivo reveal that Dead end-containing vesicles are associated with recycling endosomes and the exocyst, and control exocyst localization in fusion cells. These results indicate that the Dead end GTPase plays an important role in trafficking membrane components involved in tracheal fusion cell morphogenesis and lumenal development

    Twine: display and analysis of cis-regulatory modules

    Get PDF
    Summary: Many algorithms analyze enhancers for overrepresentation of known and novel motifs, with the goal of identifying binding sites for direct regulators of gene expression. Twine is a Java GUI with multiple graphical representations (‘Views’) of enhancer alignments that displays motifs, as IUPAC consensus sequences or position frequency matrices, in the context of phylogenetic conservation to facilitate cis-regulatory element discovery. Thresholds of phylogenetic conservation and motif stringency can be altered dynamically to facilitate detailed analysis of enhancer architecture. Views can be exported to vector graphics programs to generate high-quality figures for publication. Twine can be extended via Java plugins to manipulate alignments and analyze sequences

    Formation and specification of a Drosophila dopaminergic precursor cell

    Get PDF
    Dopaminergic neurons play important roles in animal behavior, including motivation, reward and locomotion. The Drosophila dopaminergic H-cell interneuron is an attractive system for studying the genetics of neural development because analysis is focused on a single neuronal cell type. Here we provide a mechanistic understanding of how MP3, the precursor to the H-cell, forms and acquires its identity. We show that the gooseberry/gooseberry-neuro (gsb/gsb-n) transcription factor genes act to specify MP3 cell fate. It is proposed that single-minded commits neuroectodermal cells to a midline fate, followed by a series of signaling events that result in the formation of a single gsb+/gsb-n+ MP3 cell per segment. The wingless signaling pathway establishes a midline anterior domain by activating expression of the forkhead transcription factors sloppy paired 1 and sloppy paired 2. This is followed by hedgehog signaling that activates gsb/gsb-n expression in a subgroup of anterior cells. Finally, Notch signaling results in the selection of a single MP3, with the remaining cells becoming midline glia. In MP3, gsb/gsb-n direct H-cell development, in large part by activating expression of the lethal of scute and tailup H-cell regulatory genes. Thus, a series of signaling and transcriptional events result in the specification of a unique dopaminergic precursor cell. Additional genetic experiments indicate that the molecular mechanisms that govern MP3/H-cell development might also direct the development of non-midline dopaminergic neurons

    Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers

    Get PDF
    One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo

    Diverse modes of Drosophila tracheal fusion cell transcriptional regulation

    Get PDF
    Drosophila tracheal fusion cells play multiple important roles in guiding and facilitating tracheal branch fusion. Mechanistic understanding of how fusion cells function during development requires deciphering their transcriptional circuitry. In this paper, three genes with distinct patterns of fusion cell expression were dissected by transgenic analysis to identify the cis regulatory modules that mediate their transcription. Bioinformatic analysis involving phylogenetic comparisons coupled with mutational experiments were employed. The dysfusion bHLH-PAS gene was shown to have two fusion cell cis-regulatory modules; one driving initial expression and another autoregulatory module to enhance later transcription. Mutational dissection of the early module identified at least four distinct inputs, and included putative binding sites for ETS and POU homeodomain proteins. The ETS transcription factor Pointed mediates the transcriptional output of the branchless/breathless signaling pathway, suggesting that this pathway directly controls dysfusion expression. Fusion cell cis-regulatory modules of CG13196 and CG15252 require two Dysfusion:Tango binding sites, but additional sequences modulate the breadth of activation in different fusion cell classes. These results begin to decode the regulatory circuitry that guides transcriptional activation of genes required for fusion cell morphogenesis

    Drosophila melanogaster Zelda and Single-minded collaborate to regulate an evolutionarily dynamic CNS midline cell enhancer

    Get PDF
    The Drosophila Zelda transcription factor plays an important role in regulating transcription at the embryonic maternal-to-zygotic transition. However, expression of zelda continues throughout embryogenesis in cells including the developing CNS and trachea, but little is known about its post-blastoderm functions. In this paper, it is shown that zelda directly controls CNS midline and tracheal expression of the link (CG13333) gene, as well as link blastoderm expression. The link gene contains a 5’ enhancer with multiple Zelda TAGteam binding sites that in vivo mutational studies show are required for link transcription. The link enhancer also has a binding site for the Single-minded: Tango and Trachealess:Tango bHLH-PAS proteins that also influences link midline and tracheal expression. These results provide an example of how a transcription factor (Single-minded or Trachealess) can interact with distinct co-regulatory proteins (Zelda or Sox/POU-homeodomain proteins) to control a similar pattern of expression of different target genes in a mechanistically different manner. While zelda and single-minded midline expression is well-conserved in Drosophila, midline expression of link is not well-conserved. Phylogenetic analysis of link expression suggests that ~60 million years ago, midline expression was nearly or completely absent, and first appeared in the melanogaster group (including D. melanogaster, D. yakuba, and D. erecta) >13 million years ago. The differences in expression are due, in part, to sequence polymorphisms in the link enhancer and likely due to altered binding of multiple transcription factors. Less than 6 million years ago, a second change occurred that resulted in high levels of expression in D. melanogaster. This change may be due to alterations in a putative Zelda binding site. Within the CNS, the zelda gene is alternatively spliced beginning at mid-embryogenesis into transcripts that encode a Zelda isoform missing three zinc fingers from the DNA binding domain. This may result in a protein with altered, possibly non-functional, DNA-binding properties. In summary, Zelda collaborates with bHLH-PAS proteins to directly regulate midline and tracheal expression of an evolutionary dynamic enhancer in the post-blastoderm embryo

    The CNS midline cells and spitz class genes are required for proper patterning of Drosophila ventral neuroectoderm

    Get PDF
    The Drosophila embryonic central nervous system (CNS) develops from sets of neuroblasts (NBs) which segregate from the ventral neuroectoderm during early embryogenesis. It is not well established how each individual NB in the neuroectoderm acquires its characteristic identity along the dorsal-ventral axis. Since it is known that CNS midline cells and spitz class genes (pointed, rhomboid, single-minded, spitz and Star) are required for the proper patterning of ventral CNS and epidermis originated from the ventral neuroectoderm, this study was carried out to determine the functional roles of the CNS midline cells and spitz class genes in the fate determination of ventral NBs and formation of mature neurons and their axon pathways. Several molecular markers for the identified NBs, neurons, and axon pathways were employed to examine marker gene expression profile, cell lineage and axon pathway formation in the spitz class mutants. This analysis showed that the CNS midline cells specified by single-minded gene as well as spitz class genes are required for identity determination of a subset of ventral NBs and for formation of mature neurons and their axon pathways. This study suggests that the CNS midline cells and spitz class genes are necessary for proper patterning of the ventral neuroectoderm along the dorsal-ventral axis
    • …
    corecore