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ABSTRACT

Summary: Many algorithms analyze enhancers for overrepresentation

of known and novel motifs, with the goal of identifying binding sites for

direct regulators of gene expression. Twine is a Java GUI with multiple

graphical representations (‘Views’) of enhancer alignments that

displays motifs, as IUPAC consensus sequences or position frequency

matrices, in the context of phylogenetic conservation to facilitate

cis-regulatory element discovery. Thresholds of phylogenetic conser-

vation and motif stringency can be altered dynamically to facilitate

detailed analysis of enhancer architecture. Views can be exported to

vector graphics programs to generate high-quality figures for publica-

tion. Twine can be extended via Java plugins to manipulate alignments

and analyze sequences.

Availability: Twine is freely available as a compiled Java .jar package

or Java source code at http://labs.bio.unc.edu/crews/twine/.

Contact: steve_crews@unc.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Transcription is controlled by binding of sequence-specific tran-

scription factors to DNA sequences near a gene. These binding
sites are organized into modules called cis-regulatory modules or

enhancers (Ong and Corces, 2011). Understanding how specific
combinations of binding sites lead to the precise control of gene

expression in developmental patterns or in response to physio-
logical regulation is a major goal of modern biology.

Many software tools have been devised to aid in deciphering
cis-regulatory logic, by predicting binding sites for known tran-

scriptional regulators or by identifying putative motifs for novel
regulators. Databases of in vitro and in vivo binding specificities

for thousands of transcription factors enable predictions of

possible regulators for an enhancer of interest (Das and Dai,
2007, Matys et al., 2003, Portales-Casamar et al., 2010, Zhu

et al., 2011). Various algorithms search for enrichment of short
sequences (motifs) above statistical ‘noise’ (reviewed in Das and

Dai, 2007).
However, most program outputs are either text-based or

output graphical representations as raster images (Thomas-
Chollier et al., 2011), and it is tedious to manually annotate

enhancers with binding site predictions. Genome browsers
(Homann and Johnson, 2010, Kent et al., 2002, Nicol et al.,

2009, Stein et al., 2002) and gene browsers (Rebeiz and

Posakony, 2004) map binding sites and functional genomic
information on the whole-genome and single-gene scales in a
dynamic fashion that allow greater user control. Twine comple-

ments these programs as an interactive graphical tool to analyze
and compare enhancers. Twine displays the most common infor-
mation used by researchers (motif locations and evolutionary

conservation) in several intuitive ‘Views’ to help analysis and pre-
diction of regulatory information, and the Views can be exported
as vector graphics files to generate figures with scaled represen-

tations of conservation and motif locations.

2 FEATURES

Using FASTA-format sequence alignments as input, Twine gen-
erates multiple displays (‘Views’) of each alignment to allow visu-

alization of sequence conservation (Fig. 1): Comparison View,
Conservation View and Sequence View. The Comparison View
represents each alignment with blocks of conservation and motif

matches to the ‘reference sequence’ (the first sequence in each
alignment). The threshold for conservation (0–100% of aligned
sequences) and Blur (number of nucleotides used in each window

for calculating conservation, 1–20 bp) can be adjusted to alter the
number and span of conservation blocks. The selected alignment
from the Comparison View is also displayed in Conservation and

Sequence Views.
The Conservation View contains three sub-Views. The Aligned

Species View is a graphical representation of aligned sequences in

the selected alignment, with positions of nucleotides represented
as black boxes, and motif matches indicated in each sequence
by colored boxes. The Conservation Plot View displays conser-

vation along the reference sequence, using the Blur factor
to smooth the plot by averaging the conservation level of adja-
cent nucleotides. The Unaligned Species View represents each

sequence from the alignment, with all gaps removed to reveal
dramatic variations in species sequence length, indicating a pos-
sible problem in sequence assembly. The Sequence View displays

the DNA sequence for the selected alignment, allowing direct
visualization of the alignment and organization of motifs.
Matches to sequence motifs, entered as IUPAC strings or

Position Frequency Matrices (PFMs), are displayed on the
sequence views as colored blocks. IUPAC motifs are input as
one or more binding sites, or as a consensus sequence with

degenerate nucleotides (A, C, G, T, M, R, W, S, Y, K, V, H,
D, B and N). The number of mismatches allowed can be user-
specified for each motif. Matrices are imported as horizontal

counts or frequencies (vertical matrices can be rotated to hori-
zontal matrices in the input window). Motif thresholds can be*To whom correspondence should be addressed.
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independently set, allowing control over match density. Strength
of each match is indicated by opacity of each block; the range of
opacity and threshold are user-adjusted.

Clicking on graphical representations of the alignments
(Comparison View or Conservation Views) automatically
moves the Sequence View to the appropriate location. Once a

matrix is added, thresholds can be adjusted ‘on-the-fly’ using
a slider to adjust the similarity threshold [the threshold score is

the negative log of the product of each position’s frequency in the
matrix; therefore, zero is the most stringent possible score (Sung,
2010)]. To identify conserved motifs in non-optimal alignments

and compensatory binding site shifts, the ‘drift’ of matches be-
tween species from linear alignment can be increased so that
these will be considered ‘conserved’ (Supplementary Fig. S1).

Matches can also be filtered to display only matches conserved
at the current threshold.
Motif libraries can be saved to organize collections, and they

can be imported en masse from text files containing motif matri-
ces in commonly used formats (e.g. JASPAR). Motif libraries

can be filtered using strings (literal or regular expression) match-
ing motif descriptors (Supplementary Fig. S2). Using zero-
to third-order Markov Chain background models (Liu et al.,

2001), enrichment of each motif over the background model
are calculated using binomial (Papatsenko, 2007) and Poisson
distributions.

After opening enhancer alignments and adding motifs, the
organization and conservation of binding sites within each en-
hancer, as well as patterns of motif clustering between enhancers,

can be identified in the different Views. When threshold

parameters have been adjusted to user specification, each View
can be saved as Scalable Vector Graphics (SVG) files, where each

element can be independently manipulated by programs, such as
Adobe Illustrator or Inkscape. In addition to SVG outputs of

each alignment view, sub-alignments can be saved in FASTA

format by drag-selecting a region in the Aligned Species or
Conservation Plot Views and saving the selection as FASTA

alignments. Thus, potential ‘minimal’ enhancers from larger
fragments can be extracted by analyzing the conservation pat-

terns and clustered binding sites of likely regulators. Alignment
data, motif statistics and the set of all motif matches can be

exported as a tab-delimited file for further analysis.
To generate representations of all deletions or binding site

mutations of a given enhancer (such as from in vitro mutagenesis

experiments), an alignment of the wild-type sequence to se-
quences with each variant can be opened in Twine. Inputting

motifs for tested binding sites generates an Aligned Sequence
view indicating presence or absence (or deletion) of all tested

variants (Supplementary Fig. S3).
Using a plugin interface implementing the Java Simple Plugin

Framework, AlignedSequence objects (a custom Java class con-
taining all alignments and motifs) can be sent to user-written

Java plugins, modified (e.g. aligned, analyzed and manipulated),

then returned to Twine for display. Several example plugins, as
well as a template, are included. Future work includes expanding

the suite of plugins and supporting manual adjustments to
alignments.
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