1,600 research outputs found

    Suppression of piriform cortex activity in rat by corticotropin-releasing factor 1 and serotonin 2A/C receptors

    Get PDF
    The piriform cortex (PC) is richly innervated by Corticotropin-releasing factor (CRF) and Serotonin (5-HT) containing axons arising from central amygdala and Raphe nucleus. CRFR1 and 5-HT2A/2CRs have been shown to interact in manner where CRFR activation subsequently potentiates the activity of 5-HT2A/2CRs. The purpose of this study was to determine how the activation of CRFR1 and/or 5-HT2Rs modulates PC activity at both the circuit and cellular level. Voltage sensitive dye imaging showed that CRF acting through CRFR1 dampened activation of the layer II of PC and interneurons of endopiriform nucleus. Application of the selective 5-HT2A/CR agonist 2,5-dimethoxy-4-iodoamphetamine (DOI) following CRFR1 activation potentiated this effect. Blocking the interaction between CRFR1 and 5-HT2R with a Tat-CRFR1-CT peptide abolished this potentiation. Application of forskolin did not mimic CRFR1 activity but instead blocked it, while a protein kinase A antagonist had no effect. However, activation and antagonism of protein kinase C (PKC) either mimicked or blocked CRF modulation respectively. DOI had no effect when applied alone indicating that the prior activation of CRFR1 receptors was critical for DOI to show significant effects similar to CRF. Patch clamp recordings showed that both CRF and DOI reduced the synaptic responsiveness of layer II pyramidal neurons. CRF had highly variable effects on interneurons within layer III, both increasing and decreasing their excitability, but DOI had no effect on the excitability of this group of neurons. These data show that CRF and serotonin, acting through both CRFR1 and 5-HT2A/CRs, reduce the activation of the PC. This modulation may be an important blunting mechanism of stressor behaviours mediated through the olfactory cortex

    Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines.

    Get PDF
    The early stages of Alzheimer\u27s disease pathogenesis are thought to occur at the synapse level, since synapse loss can be directly correlated with memory dysfunction. Considerable evidence has suggested that amyloid beta (Aβ), a secreted proteolytic derivative of amyloid precursor protein, appears to be a critical factor in the early \u27synaptic failure\u27 that is observed in Alzheimer\u27s disease pathogenesis. The identification of Aβ at neuronal spines with high spatial resolution and high surface specificity would facilitate unraveling the intricate effect of Aβ on synapse loss and its effect on neighboring neuronal connections. Here, tip-enhanced Raman spectroscopy was used to map the presence of Aβ aggregations in the vicinity of the spines exposed to Aβ preformed in vitro. Exposure to Aβ was of 1 and 6 hours. The intensity variation of selected vibrational modes of Aβ was mapped by TERS for different exposure times to Aβ. Of interest, we discuss the distinct contributions of the amide modes from Aβ that are enhanced by the TERS process and in particular the suppression of the amide I mode in the context of recently reported observations in the literature

    Tip-enhanced Raman spectroscopy of amyloid β at neuronal spines.

    Get PDF
    The early stages of Alzheimer\u27s disease pathogenesis are thought to occur at the synapse level, since synapse loss can be directly correlated with memory dysfunction. Considerable evidence has suggested that amyloid beta (Aβ), a secreted proteolytic derivative of amyloid precursor protein, appears to be a critical factor in the early \u27synaptic failure\u27 that is observed in Alzheimer\u27s disease pathogenesis. The identification of Aβ at neuronal spines with high spatial resolution and high surface specificity would facilitate unraveling the intricate effect of Aβ on synapse loss and its effect on neighboring neuronal connections. Here, tip-enhanced Raman spectroscopy was used to map the presence of Aβ aggregations in the vicinity of the spines exposed to Aβ preformed in vitro. Exposure to Aβ was of 1 and 6 hours. The intensity variation of selected vibrational modes of Aβ was mapped by TERS for different exposure times to Aβ. Of interest, we discuss the distinct contributions of the amide modes from Aβ that are enhanced by the TERS process and in particular the suppression of the amide I mode in the context of recently reported observations in the literature

    Controlled Positioning of Analytes and Cells on a Plasmonic Platform for Glycan Sensing Using Surface Enhanced Raman Spectroscopy

    Get PDF
    The rise of molecular plasmonics and its application to ultrasensitive spectroscopic measurements has been enabled by the rational design and fabrication of a variety of metallic nanostructures. Advanced nano and microfabrication methods are key to the development of such structures, allowing one to tailor optical fields at the sub-wavelength scale, thereby optimizing excitation conditions for ultrasensitive detection. In this work, the control of both analyte and cell positioning on a plasmonic platform is enabled using nanofabrication methods involving patterning of fluorocarbon (FC) polymer (

    Role of Spinophilin in Group I Metabotropic Glutamate Receptor Endocytosis, Signaling, and Synaptic Plasticity

    Get PDF
    Activation of Group I metabotropic glutamate receptors (mGluRs) activates signaling cascades, resulting in calcium release from intracellular stores, ERK1/2 activation, and long term changes in synaptic activity that are implicated in learning, memory, and neurodegenerative diseases. As such, elucidating the molecular mechanisms underlying Group I mGluR signaling is important for understanding physiological responses initiated by the activation of these receptors. In the current study, we identify the multifunctional scaffolding protein spinophilin as a novel Group I mGluR-interacting protein. We demonstrate that spinophilin interacts with the C-terminal tail and second intracellular loop of Group I mGluRs. Furthermore, we show that interaction of spinophilin with Group I mGluRs attenuates receptor endocytosis and phosphorylation of ERK1/2, an effect that is dependent upon the interaction of spinophilin with the C-terminal PDZ binding motif encoded by Group I mGluRs. Spinophilin knock-out results in enhanced mGluR5 endocytosis as well as increased ERK1/2, AKT, and Ca2+ signaling in primary cortical neurons. In addition, the loss of spinophilin expression results in impaired mGluR5-stimulated LTD. Our results indicate that spinophilin plays an important role in regulating the activity of Group I mGluRs as well as their influence on synaptic activity

    The rhesus macaque is three times as diverse but more closely equivalent in damaging coding variation as compared to the human

    Full text link
    Abstract Background As a model organism in biomedicine, the rhesus macaque (Macaca mulatta) is the most widely used nonhuman primate. Although a draft genome sequence was completed in 2007, there has been no systematic genome-wide comparison of genetic variation of this species to humans. Comparative analysis of functional and nonfunctional diversity in this highly abundant and adaptable non-human primate could inform its use as a model for human biology, and could reveal how variation in population history and size alters patterns and levels of sequence variation in primates. Results We sequenced the mRNA transcriptome and H3K4me3-marked DNA regions in hippocampus from 14 humans and 14 rhesus macaques. Using equivalent methodology and sampling spaces, we identified 462,802 macaque SNPs, most of which were novel and disproportionately located in the functionally important genomic regions we had targeted in the sequencing. At least one SNP was identified in each of 16,797 annotated macaque genes. Accuracy of macaque SNP identification was conservatively estimated to be >90%. Comparative analyses using SNPs equivalently identified in the two species revealed that rhesus macaque has approximately three times higher SNP density and average nucleotide diversity as compared to the human. Based on this level of diversity, the effective population size of the rhesus macaque is approximately 80,000 which contrasts with an effective population size of less than 10,000 for humans. Across five categories of genomic regions, intergenic regions had the highest SNP density and average nucleotide diversity and CDS (coding sequences) the lowest, in both humans and macaques. Although there are more coding SNPs (cSNPs) per individual in macaques than in humans, the ratio of dN/dS is significantly lower in the macaque. Furthermore, the number of damaging nonsynonymous cSNPs (have damaging effects on protein functions from PolyPhen-2 prediction) in the macaque is more closely equivalent to that of the human. Conclusions This large panel of newly identified macaque SNPs enriched for functionally significant regions considerably expands our knowledge of genetic variation in the rhesus macaque. Comparative analysis reveals that this widespread, highly adaptable species is approximately three times as diverse as the human but more closely equivalent in damaging variation.http://deepblue.lib.umich.edu/bitstream/2027.42/112453/1/12863_2011_Article_1004.pd

    Raf kinase activation of adenylyl cyclases: isoform-selective regulation

    Get PDF
    ABSTRACT Adenylyl cyclases (AC), a family of enzymes that catalyze the synthesis of cyclic AMP, are critical regulators of cellular functions. The activity of adenylyl cyclase is stimulated by a range of hormone receptors, primarily via interactions with G-proteins; however, recently we identified an alternate mechanism by which growth factors sensitize adenylyl cyclase activation. We suggested that this mechanism might involve a Raf kinasemediated serine phosphorylation of adenylyl cyclase. However, the direct involvement of a specific form of Raf kinase is yet to be demonstrated. Furthermore, whether this mechanism is generalized to other isoforms of adenylyl cyclase is unknown. In human embryonic kidney 293 cells, we now demonstrate that in reconstitution studies, c-Raf kinase can mediate phosphorylation of AC VI. Furthermore, AC VI coimmunoprecipitates with c-Raf. Raf kinase-dependent regulation of adenylyl cyclase VI is dependent on the integrity of Ser750 in the fourth intracellular loop of the enzyme and Ser603/Ser608 in the C1b region of the molecule. To examine how generalized this effect is, we studied representative isoforms of the major subfamilies of adenylyl cyclase viz., AC I, AC II, and AC V. Raf kinase-dependent sensitization/ phosphorylation of adenylyl cyclases is common to AC VI, AC V, and AC II isoforms but not AC I. In aggregate, these studies indicate that Raf kinase associates with adenylyl cyclases. Furthermore, Raf kinase regulation of adenylyl cyclase is isoform-selective. These functional interactions (as well as the physical association) between adenylyl cyclases and Raf kinases suggest an important but previously unrecognized interaction between these two key regulatory enzymes

    Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing

    Get PDF
    Abstract Background B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. Results In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. Conclusions Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements

    Contrasting origin of B chromosomes in two cervids (Siberian roe deer and grey brocket deer) unravelled by chromosome-specific DNA sequencing.

    Get PDF
    BACKGROUND: B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS: In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS: Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements

    Role of angiotensin II type 1A receptor phosphorylation, phospholipase D, and extracellular calcium in isoform-specific protein kinase C membrane translocation responses

    Get PDF
    The angiotensin II type 1A receptor (AT(1A)R) plays an important role in cardiovascular function and as such represents a primary target for therapeutic intervention. The AT(1A)R is coupled via G(q) to the activation of phospholipase C, the hydrolysis of phosphoinositides, release of calcium from intracellular stores, and the activation of protein kinase C (PKC). We show here that PKC beta I and PKC beta II exhibit different membrane translocation patterns in response to AT(1A)R agonist activation. Whereas PKC beta II translocation to the membrane is transient, PKC beta I displays additional translocation responses: persistent membrane localization and oscillations between the membrane and cytosol following agonist removal. The initial translocation of PKC beta I requires the release of calcium from intracellular stores and the activation of phospholipase C, but persistent membrane localization is dependent upon extracellular calcium influx. The mutation of any of the three PKC phosphorylation consensus sites (Ser-331, Ser-338, and Ser-348) localized within the AT(1A)R C-tail significantly increases the probability that persistent increases in diacylglycerol levels and PKC beta I translocation responses will be observed. The persistent increase in AT(1A)R-mediated diacylglycerol formation is mediated by the activation of phospholipase D. Although the persistent PKC beta I membrane translocation response is absolutely dependent upon the PKC activity-dependent recruitment of an extracellular calcium current, it does not require the activation of phospholipase D. Taken together, we show that the patterning of AT(1A)R second messenger response patterns is regulated by heterologous desensitization and PKC isoform substrate specificity
    corecore